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       In a Bussinesq approximation free internal waves are considered at the account of turbulent 
viscosity and diffusion in a vertically-non-uniform flow. In linear approximation the dispersive 
relation and decrement of wave attenuation are found. The equation for amplitude of the vertical 
velocity, containing small parameter at the higher derivative, proportional to turbulent viscosity, 
solved by Ljusternik-Vishik asymptotic method. Boundary-layer solution on a vicinity of a bottom 
and a free surface are found. The non-viscous boundary value problem of the second order is solved 
numerically according to an Adams's implicit scheme of the third order accuracy. The wave number 
at the fixed frequency of a wave is found by a shooting method. Stokes drift velocity and vertical 
wave flux of salt are determined in the second order on wave amplitude. Shift of phases between 
fluctuations of salinity and vertical velocity with regard to turbulent viscosity and diffusion differs 
from / 2π , therefore the vertical wave flux of salt differs from zero. The dispersive parity, decrement 
of wave attenuation and wave fluxes are calculated for internal waves observed during the 3rd stage 
of the 44 cruise of R/V "Mikhail Lomonosov" to the northwest shelf of the Black sea. Critical layers 
for a current profile were absent at the test site (where the measurements were carried out), i.e. phase 
rate of internal waves exceeded the current velocity. It is shown that out of a layer with the maximum 
gradient of salinity, i.e. out of surface layer, the wave flux of salt is comparable in absolute value with 
the turbulent one. In a surface layer turbulent flux of salt exceeds the wave one. The consideration of 
current results in slight decrease of the wave flux. Horizontal component of Stokes drift velocity, 
which is transversal to the wave propagation direction, differs from zero and is one order less than 
longitudinal one when taking into account the current.  
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Introduction. Internal waves are presented everywhere in the ocean due to 

effect of sources which generate them. Internal waves can exist in stratified 
medium when water density increases with the depth. Below the upper mixed layer 
such situation is typical for the World Ocean. Atmospheric pressure perturbations, 
wind stresses on the sea surface, interaction of tides and currents with bottom 
topography inhomogeneities [1], eddy currents may be referred to internal wave 
energy sources. 

Actuality of the problems is related to the fact that internal waves can 
contribute to vertical transfer in the ocean. Usually, vertical transfer in marine 
environment is connected with small-scaled turbulence that has an intermittent 
character, i. e. the turbulence is presented in the form of “patches”, generated by 
hydrodynamic instability of currents and breaking of internal waves. Vertical 
transfer plays an important role in admixture transport, oxygen diffusion to the 
deep layers of the sea and hydrogen sulphide diffusion from deep layers of the 
Black Sea. 

The internal waves with regard for eddy viscosity and diffusion were 
considered in a number of works [1 – 3], where a decrement of wave attenuation on 
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turbulence was determined. Non-linear effects at wave propagation with no regard 
for eddy viscosity and diffusion were considered in [4, 5]. In these works a mean 
wave-induced current and non-oscillatory correction to the average density were 
determined.  

Internal waves with regard for nonlinearity and viscosity were considered in 
[6], but vertical wave fluxes of heat and salt were not taken into account.  

Vertical transfer in stratified seawater column is associated with breaking of 
small-scale internal wave [7], and turbulent energy dissipation rate and a 
coefficient of vertical eddy diffusivity are estimated. It is shown that in the area of 
continental slope at the edge of the Black Sea shelf the intensification of vertical 
transfer, related with internal wave amplitude increase at their propagation to the 
shallow water area [8], takes place. 

Vertical flows, determined by weak-nonlinear internal waves, were considered 
in [9]. Such flows exist due to vertical velocity and temperature (salinity) 
oscillation phase shift, which differs from π/2 when diffusion and eddy viscosity 
are taken into account.  

In the given work the vertical flows caused by internal waves on the baroclinic 
flow are considered. It is of interesting to compare wave fluxes with the 
corresponding turbulent fluxes both in the presence of current and in the absence of 
it. Moreover, the Stokes drift speed in both these cases is found. 

 
Formulation of the problem. Free internal waves on the baroclinic flow with 

account for eddy viscosity and diffusion in the Boussinesq approximation are 
considered. Internal wave amplitude distribution, dispersive relation and wave 
attenuation decrement are calculated in linear approximation. The Stokes drift 
speed and wave fluxes of salt are found in the second order of the wave amplitude.  

We introduce dimensionless variables by the following formulas (dimensional 
physical quantities are denoted by wavy lines above the symbols):  

 

tt
ω∗

= ,   
kk
H

= ,   ω ω ω∗= ,   1 1u u Hω∗= ,   2 2u u Hω∗=    3 3u u Hω∗= , 

2 2
0 *P H Pρ ω= ,   2

0 *
H
g
ρρ ρ ω= ,   2 0

0 0 *
H

g
ρρ ρ ω= ,   i ix Hx= ,   i i iK K µ= , 

i i iM M µ=    ( 1, 2, 3)i = ,   1 2K K= ,   1 2M M= ,   1 2µ µ= , 
 

where 1µ , 3µ  – are the characteristic values of horizontal and vertical eddy 
viscosity; g  – is an acceleration of gravity; 1 2 3, ,x x x  – are two horizontal and 
one vertical coordinates, vertical axis 3x  is directed vertically upwards; ρ  and P  
– are the wave perturbations of the density and pressure; 0ρ  – is an unperturbed 
average water density; 0ρ  – is a depth-averaged density; 1 2 3, ,u u u  – are two 
horizontal and one vertical components of velocity wave disturbances; 

1 3 1 3, , ,K K M M  – are horizontal and vertical coefficients of eddy viscosity and 
diffusion, respectively; H – is a sea depth; *ω  – is a characteristic wave 
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frequency. The coefficients of vertical eddy diffusivity and viscosity, and two 
components of the mean current velocity 0 0,U V  are assumed to be dependent on 
the vertical coordinate. The coefficients of horizontal eddy diffusivity and viscosity 
are assumed to be constant. The system of hydrodynamic equations for the wave 
disturbances in the Boussinesq approximation has the following form:  
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Here 2 1
2

*H
µε
ω

=  – is a small parameter proportional to the value of the horizontal 

eddy viscosity coefficient 1µ ; 2 3

1

µβ
µ

= , while β2 << ε2. 

Boundary conditions on the surface are the solid top condition and the absence of 
tangential stresses [2]:  

 

3 (0) 0u = ,   
3

2 31
3 1

3 1 0

0
x

uuK K
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β
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+ =

∂ ∂
,   
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Boundary conditions on the bottom are the adhesion conditions:  
 

1( 1) 0u − = ,          2 ( 1) 0u − = ,             3 ( 1) 0.u − =                        (3) 
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Linear approximation. We seek the solutions of linear approximation in the 
following form:  

 

0
1 10 3( ) e . .iu u x A c cθ= + ,   0

2 20 3( ) e . .iu u x A c cθ= + ,   0
3 30 3( ) e . .iu u x A c cθ= + , 

1 10 3( ) e . .iP P x A c cθ= + ,   1 10 3( ) e . .ix A c cθρ ρ= + ,                            (4) 
 

where . .c c  – are complex conjugate terms; A  – amplitude factor; θ  – wave phase; 

1

;k
x t
θ θ ω∂ ∂
= = −

∂ ∂
 ( k  – wave number, ω  – frequency). It is assumed that the 

wave propagates along the 1x  axis.  
Substituting (4) into the system of equations (1), we obtain the relation of 

amplitude functions 10 10 30, ,u P u and equation for 20 3 10 3( ), ( )u x xρ :  
 

30
10

3

uiu
k x
∂

=
∂

,                     0kUωΩ = − ,                                (5a) 

 

2
2 2 2 2 2 23 30 0

10 3 1 302 2
3 3 3 3 3
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ε β ε β ε= + + Ω− + , (5b) 
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ρε β ε β ε ρ+ − + Ω = ,                      (5c) 

 

2
2 2 2 2 2 220 3 20 0

3 1 20 302
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(5d) equation should be supplemented by boundary conditions arising from (2), (3):  
 

    
3
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=
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3
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0
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u

=−
= .               (6) 

 

The function 30u  satisfies the equation  
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2
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2
2 2 2 2 2 230 3 30

1 30 3 2
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( )
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dMd dN u M M k i
dx dx dx

dK du dUd d d ii u K K k i u
dx dx dx dx k dx k dx

d u dK duK k u K
dx dx dx

ε β ε β ε

ε β ε β ε

ε ε β ε β

− = + − + Ω ×

  × Ω − + − + Ω + −  
  


− + + 



 (7) 

From the boundary conditions (2), (3) we obtain the conditions for 30u : 
on the surface at 3 0x =     

30 0u = ,               
2

30
2

3

0,d u
dx

=                                      (8а) 
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on the bottom at 3 1x = −  

30
30

3

0duu
dx

= = .                                            (8b) 

 

Equation (7) has a small parameter at the higher derivative ~ 4( )εβ . We solve 
this equation, following [10, 11], by the Lusternik – Vishik asymptotical method, 
expanding 30 ,u ω  in series by εβ  small parameter:  

0 1 2 0
30 3 3 3

0 0 0
( ) ( ) ( , ) ( ) ( ) ( )i i i

i i i
i i i

u x u x v vεβ ε εβ εβ εβ εβ
= = =

= + +∑ ∑ ∑ ,             (9а) 

 
2

01 11 21( ) ( ) ( ) ( ) ...ω ω ε εβω ε εβ ω ε= + + + ,                           (9b) 
 

where 1
3((1 ) / )iv x εβ+  – boundary layer solution in the neighborhood of the 

bottom, 0
3( / )iv x εβ  – in the neighborhood of free surface. Boundary layer 

corrections are the functions, rapidly decreasing with the distance from the 
boundary, which provide the execution of the boundary conditions. In the general 
case the functions 3 3( , )iu x ε  depend on the parameter ε  , because it is contained 
in the equations for these functions.  

Substituting the expansions (9) in (7), we obtain the boundary value problem 
for the function 0

30u in the first order on εβ parameter:  
 

0
2 2 0 2 2 0 2 2 0 2 030 0

1 01 01 30 01 1 30 1 30 302
3 3 3

1( ) ( ) du dUd iM k i i u i K k u K k u N u
dx k dx k dx

ε ε ε
   − Ω Ω − Ω − + − =  
   

,(10) 

 

where 2 0

3

dN
dx
ρ

= −  – square of the Brent-Vaissala frequency; 01 01 0kUωΩ = −  – 

wave frequency with Doppler shift.  
Boundary conditions for 0

30u  are the following: 
 

3

0
30 0

0
x

u
=
= ,     

3

0
30 1

0
x

u
=−

= .                                           (11) 
 

The equation (10) has a small parameterε  and following the method, 
described in [10], we seek the solution and frequency 01ω  in a form of asymptotic 
series by this parameter:  

 

0 2
30 3 0 3 1 3 2 3( , ) ( ) ( ) ( ) ...u x w x w x w xε ε ε= + + + ,                              (12а) 

 

2
01 0 1 2 ...ω ω εω ε ω= + + + .                                    (12b) 
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In a zero order on parameter ε  function 0w satisfy boundary value problem 
 

2 2 2 2
20 0 0

0 02 2 2
3 0 0 3

( ) 0d w N d Ukk w w
dx dx

−Ω
+ + =

Ω Ω
,                                  (13а) 
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Where 0 0 0kUωΩ = − . In the absence of singularity 0 0Ω =  the boundary value 
problem (13) has a numerable set of eigenfunctions – a set of modes and for any 
value of frequency 0 max( )Nω <  corresponds a certain wave number k for given 
mode. 

The next term in the expansion (12a) is determined from the following 
equation  
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Boundary conditions for 1w  function  
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w
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The solvability condition of the boundary value problem (14), (15) 
 

0

1 0 3
1

0f w dx
−

=∫ .                                                      (16) 

 

For 1 0ω ≠  this condition is not generally fulfilled and the boundary value problem 
(14), (15) has no solutions.  

The next approximation 2w  in the parameter ε  satisfies the following 
equation   
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Boundary conditions for 2w  have the following form 
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Solvability condition of the boundary value problem (17), (18) 
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Hence we find the expression for 2ω : 
0 24

2 2 40 01
0 1 1 0 32 2

0 3 01
2 0 22

2 20
0 33 2 2

0 0 31
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∫

∫
                  (20) 

Let us find a boundary layer solution 0
0v in the expansion (9a) to satisfy the 

boundary conditions (8a), (8b) on the surface. Substituting the expansion (9a) in 
the equation (7), and expanding 3K , 3M  and 0U , 0V  in Taylor series in the 

neighborhood 3 0x =  we obtain the equation for 0
0 ( )v η , in the zero order on 

parameter εβ :  
6 0 4 0 2 0

20 0 0
3 3 0 3 3 06 4 2(0) (0) (0)( (0) (0)) (0)v v vK M i K M

η η η
∂ ∂ ∂
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∂ ∂ ∂
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The solution of the equation (21), attenuating with the distance from the surface, 
has the following form:  
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Here 0 0
1 2,λ λ  are calculated according to the formulas  
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 
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The equation for the boundary layer solution 1
0 3 2((1 ) / )v x ε+  has the 

following form:  
6 1 4 1 2 2 1

0 3 3 0 0 0
06 4 2

1 3 3 1 3 3 1

( 1) 0M Ki
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η η η

∂ + ∂ Ω ∂
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∂ ∂ ∂
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where 3
1

( 1)xη
εβ
+

= . The solution of the given equation, attenuating with the 

distance from the bottom and satisfying the boundary conditions (8b), is 
determined by formula: 

)exp()exp( 12
1
011

1
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1
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The values 1 2,λ λ  are calculated according to the formulas (24), only the eddy 
transfer coefficients and wave frequency with the Doppler shift are calculated at 
the lower boundary. 

The equation for salinity wave perturbations s  has the form  

( )

20
1 0 2 0 3 3 1

1 2 3 3 1 1

22
1 3

2 2 3 3

( ) ( )

,

Ss s s s su U u V u u M
t x x x x x x
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  ∂ ∂ ∂ ∂
+ +   ∂ ∂ ∂ ∂   

  (27) 

where 0 3( )S x  – is an average salinity profile. The solutions of linear 
approximation will be sought in the following form:  

1 10 3( ) e . .is s x A c cθ= + ,                                             (28) 

where 10s  satisfies the equation 
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Equation (29) has a small parameter at the higher derivative, and we are to seek a 
solution at the form similar to (9a):  
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From (29) it follows that 
2

10 0 2 ...Is s sε= + + ,                                             (31) 
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here 2
2i i

ωω = . Boundary layer solutions I
Пs 0  and 0

0Пs  in the neighborhood of the 

bottom and free surface satisfy the following equations, respectively  
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Boundary conditions have the form 
10 10(0) ( 1) 0.s s= − =                                              (34) 
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Solution of the equation (33а) in the neighborhood of the sea surface is the 
following:  

)exp()exp()exp()( 0
1

00
2

00
1

0
1

0
0 ηληηληλη SSSП PQCs ++= ,                 (35) 
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M K dx

=
Ω −

,                              (36b) 

 
 

00
1 SS QC −= .                                                  (36c) 

Boundary layer solution of the equation (33b) in the neighborhood of the bottom 
has the following form:  
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0
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I
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1
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1
1 3 3
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1
0 3 3 3

( 1)
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−
=
Ω − − − −
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From the boundary condition (34) it follows 

1
0
12 SS QC −= .                                                     (39) 

Nonlinear effects. The velocity of the Stokes drift of the fluid particles is 
determined by the formula [12]:  

0

,u u u
t

s
dτ= ∇∫                                                       (40) 

 

where u  – is a field of Eulerian velocities, a horizontal bar means the averaging 
over the wave period. Horizontal velocity component of the Stokes drift (directed 
along the wave vector) in the second order of amplitude, has the following form:   

* 2 * * 2*
0 30 30 30 30 30 301 1

1 * 2 * 2
3 3 3 3

2( )s
du du u d u u d uA Au

k dx dx dx dx
ω

ωω ω ω
= + + .                             (41) 

Horizontal velocity component of the Stokes drift (transversal to the direction of 
wave propagation) is calculated according to the formula  

**
30 201 1

2
3

( ) . .s
d u uiA Au c c

dxω
= + ,       1 e itA A ω= .                   (42) 

At the presence of the mean current, whose velocity component 0V (transversal 
to the direction of wave propagation) depends on vertical coordinate, the value 

2su differs from zero and in the non-viscous case is calculated as follows:  
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)(2

3

0
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*
11

2 dx
dVw
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dAAu s Ω

−=
ω

.                                       (43) 

Vertical wave flux of salt 3u S  taking into account the expansions (9a), (30), (31) 
determined by formula:  

..))(())((/ *
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0

21
0

*
0

*0
0

2
02

2
0

2
13 ccswvvsSSswASu П

I
П ++++++= εεβεβεβεβε  (44) 

Calculation results. Let us calculate salt wave fluxes for the internal waves, 
which had been observed southwestward of Yevpatoria during the experiment, 
performed at the third stage of the 44th R/V Mikhail Lomonosov cruise.  

In Fig. 1 we have plotted four realizations of the temperature contour 
elevations calculated according to the data of the GRAD instruments, that is to say, 
the gradient-distributed temperature gauges [13]. The first device was situated in 
5 – 15 m layer, the second – in 15 – 25 m layer, the third – in 25 – 35 m layer and 
the fourth – in 35 – 60 m layer. It is obvious that strong oscillations with 15 m 
period in 25 – 60 m layer are in against phase with the oscillations in 25 – 60 m 
layer, which indicates the oscillations of the second mode. The maximum 
amplitude by swells made up 0.5 m. In Fig. 2, a, b the vertical profiles of the Brent-
Vaissala frequency and two components of the current velocity are represented. 
The boundary value problem (13) for internal waves is solved numerically by the 
implicit Adams scheme of the third order accuracy. Wave number is found by the 
shooting method from the necessity of satisfying the boundary conditions (13b). 
The eigenfunction of 15 min internal waves of the second mode is shown in Fig. 2, b.  

 

 
 

Fig. 1. Time variation of the vertical displacements temperature contours  
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Thus, the amplitude of vertical displacements is proportional to 0w . According 
to the experiment data (Fig. 1; 2, b), the maximum of 0w  function correspond to 
the maximum vertical displacements, i.e. in the experiment the second mode was 
observed. We calculate a vertical eddy diffusion coefficient 3M  by the empirical 
formula, which is valid in the area of continental slope at the Black sea north-west 
shelf [7]: 4 1

3 8.4 10 cM N− −≅ ⋅  m2/s, cN  corresponds to Brent-Vaissala frequency 
in cph. Wavelength of the second mode 15-min internal waves is 195.6 m, typical 
value of horizontal eddy diffusion coefficient 1M  is 1 m2/s. The dispersion curves 
of the first two modes in the presence and absence of current are shown in Fig. 3. 

 
 

  

 
 
Fig. 2. Vertical profile of Brent-Vaissala frequency – a, an eigenfunction of 15 min internal waves – 
b, vertical profiles of current velocity components 

0U (…), 
0V  ( ) – c  
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Fig. 3. Dispersion curves: the first mode without current ( ) and with current (– – –); the second 

mode without current ( ) and with current (– - – - –) 

Рис. 4. Stokes drift velocity in the presence of current ( ) and in the absence of current ( ) 

 
Boundary value problem (17), (18) on the determination of 2w  function is 

solved numerically by the implicit Adams scheme of the third accuracy order 
at 3 32K M= , 1 12K M= . We find the only solution, orthogonal 0w  and wave 
attenuation decrement iδω ω= . In case of 15 min internal waves of the second 

mode 31.46 10δω −= − ⋅  rad/s. Vertical profiles of Stokes drift velocity horizontal 
component in the presence and absence (dashed curve) of current are shown in Fig. 
4. In the presence of current the Stokes drift velocity in modulus is lesser. Stokes 
drift velocity component, transversal to the direction of wave propagation, differs 
from zero only with regard to the current (Fig. 5).  

 

  
 
Fig. 5. Stokes drift velocity component, transversal to the direction of wave propagation  
Fig. 6. Vertical salinity profile  
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Fig. 7. Profiles of wave and turbulent salt fluxes: wave flux in the presence of current ( ) and in 
the absence of current ( ); turbulent salt flux (– – –)  

Wave salt flux is calculated at the vertical salinity profile, shown in Fig. 6. 

Turbulent salt flux is calculated according to the formula 0
3f

dSs M
dz

= − . Vertical 

wave salt flux 3u S  for 15 min internal waves of the second mode and a turbulent 
flux are represented in Fig. 7. In the presence of current the wave salt flux is 
somewhat lesser than in its absence. In the absence of current a wave flux (dashed 
line) is comparable in modulus with the turbulent flux at a depth more than 25 m, 
i.e. outside the surface layer of the maximum salinity gradients.  

 
Conclusions.  
1. With account of eddy viscosity and diffusion the wave salt flux 3u S  

differs from zero, and in the presence of current it differs somewhat smaller than in 
its absence.  

2. In the absence of current the wave salt flux is comparable in absolute value 
with the turbulent flux out of the subsurface layer (where the salinity gradients are 
maximal).  

3. The component of Stokes drift velocity (transversal to the wave 
propagation direction) differs from zero when the current is taken into account.  
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	From (29) it follows that
	,                                             (31)
	where
	,                                                    (32а)

