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Evolution of a single intense vortex on the ß-plane is studied based on the “elliptical approach” which 
was introduced by Legras and Dritschel for description of the eddies with uniform vorticity. A vortex 
is represented by two round patches of uniform vorticity – one inside another. One of them constitutes 
the vortex core and another – the trap zone. Radiation of the Rossby waves is not considered in this 
study. Application of the “elliptical approach” permits to generalize the earlier-proposed theory of 
intense vortex evolution on the ß-plane. Besides the Rossby and Zhukovsky–Kutta forces, it includes 
the inertia force in the equations describing the vortex motion. It is shown that the deduced system of 
equations is written down using non-canonical variables; and it can be represented in the generalized 
Hamiltonian form in case the vortex motion equations are supplemented with the equation of absolute 
vorticity conservation. Being analyzed, the deduced equations’ solutions show that they both provide 
new interpretation of the vortex self-propagation on the ß-plane and permit to characterize high-
frequency oscillations of the vortex center position. Thus the represented theory permits to explain 
similar oscillations sometimes arising in the numerical experiments. 
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Introduction. Discovery of synoptic eddies in the ocean and construction of 

the ocean circulation eddy-resolving models have stimulated research on evolution 
of intensive vortices on the ß-plane. Analytic and numerical studies have shown 
that, being affected by planetary vorticity, a single cyclonic vortex on the ß-plane 
moves to the northwest. It was demonstrated in [1, 2] that in course of its motion 
the vortex had formed an almost circular trap zone within which the liquid particles 
had been involved in a rotary motion around its center. For a cyclonic vortex, the 
liquid particles inside the trap zone are of almost constant negative vorticity. Due 
to the method of contour dynamics applied in [3], evolution of the vortex which 
initially had a form of a circular spot with constant vorticity was rather accurately 
numerically calculated. After a while, when the trap zone is formed, there arises a 
configuration which can be roughly described as a circular spot of positive vorticity 
placed inside another circular spot with negative vorticity. According to the general 
theses of the theory represented in [1, 2], the total vorticity of such a configuration 
should slightly exceed zero. 

Numerical simulations of long-term evolution of a single synoptic vortex on 
the ß-plane also show (see, for example, the figures from [3]) that the higher-
frequency oscillations of its center in the vicinity of the motion general trajectory 
are imposed on the vortex smooth motion. At certain parameters of the vortex, 
these oscillations are accompanied by deformation of its almost circular shape that 
is explained by the vortex unstable configuration. If the vorex parameters are far 
from critical, almost circular shape of the vortex core and the trap zone remains in 
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course of its movement in spite of high-frequency oscillations of the vortex center 
position. The vortex simple configuration permits to use the developed in [4] so-
called “elliptical approach” for a more detailed, as compared to the represented in 
[1, 2], description of the synoptic vortex evolution on the ß-plane. It will be shown 
below that application of the “elliptical approach” permits to write down the equa-
tions describing the vortex zone transfer and relatively high-frequency oscillations 
of its center in the Hamiltonian form. 

The second section of the paper contains discussion of the proposed model; 
and the equations describing the vortex evolution are deduced. It is shown in the 
third section that the derived equations are of the non-canonical Hamiltonian form. 
In the fourth section, solutions of the obtained equations are analyzed. Section 
Conclusion represents discussion of the solution physical features. 

 
Model of a single vortex evolution. Let us consider the following mo-del of a 

vortex on the ß-plane. At the initial moment of time the vortex is assumed to be of 
a constant positive vorticity ω2  within the circle with radius R2. It is shown in [1] 
and confirmed in [2, 3] by numerical simulations that after the vortex displaced 
along the meridian, it constituted almost a circular core with positive vorticity sur-
rounded by the trap zone with negative vorticity and was of almost a circular shape 
with radius R1. Based on the arguments in [1], the relative vorticity within the trap 
zone is assumed to be uniform and equal toω1. Since there are no reasons to sup-
pose that the centers of the trap zone and the vortex core coincide, we assume that 
their coordinates are X1, Y1 and X2, Y2, respectively (axis X is directed to the east, 
axis Y – to the north). The ß-effect impact will be taken into account only within 
the trap zone. Outside the trap zone, the liquid motion is assumed to be potential 
that is, according to [1], permissible for the intense vortex (similar scheme of al-
lowing for the ß-effect within the framework of the “elliptical approach” was pro-
posed by Bernard Legras in a private discussion). The vortex-radiated Rossby 
waves also will not be taken into account, whereas interaction between the vortex 
and the trap zone will be considered. Under such conditions, the stream function 
can be represented as the following sum Ψ= Ψ1 + Ψ2 where each of the terms is de-
rived from the following equations: 
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Equations (1) and (2) are easily solved as follows: 
 











>−+








≤−+−−−
=

,),(
8

ln
2

,),(
4

)(
8

)(
4
1

112

4
1

1

2
11

11

2
1

1
22

1
2

1

1

RrYy
r
R

R
rR

RrYyRYyrRr

βω

ββω
ψ             (3) 

 



 

PHYSICAL OCEANOGRAPHY   NO. 6 (2016) 17 











>′






 ′

≤′−′

=
.,ln

2

,),(
4
1

2
2

2
22

2
2
2

2
2

2

Rr
R
rR

RrRr

ω

ω
ψ                                              (4) 

Using the idea of [4] let us write out the equations describing translation of the vor-
tex core and the trap zone boundaries 
 

∫
Γ

=
i

dx
dt

dXS i
i ψ  and ∫

Γ
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i
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dYS i

i ψ ,                            (5) 

 

where Г1 and S1 are the trap zone boundary and square; Г2 and S2 are the vortex 
core boundary and square. Having substituted (3) and (4) to (5) we obtain the fol-
lowing system of equations: 
 

),(
2

,
8

)(
2

122
1

2
221

2
1

122
1

2
221

XX
R
R

dt
dY

RYY
R
R

dt
dX

−−=

−−=

ω

βω

                                 (6) 

 

[ ]
).)((

4
)(

2
1

,)(3)(
884

)(
2
1

1212121
2

2
12

2
12

2
2

2
1

121
2

YYXXXX
dt

dY

YYXXRRYY
dt

dX

−−−−=

−+−++−−−=

βω

βββ
ω

        (7) 

 

The system of equations (6) and (7) is closed by the equation of absolute vorticity 
conservation within the trap zone  
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Or, having taken into account (6) we obtain 
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Hamiltonian formulation of the problem. Equations (6), (7) and (9) are de-

rived under the assumption that both the vortex core and the trap zone are of a cir-
cular form. Approximately circular form of the vortex core and the trap zone will 
not be, apparently, violated only if the displacement of the core and trap zone cen-
ters is substantially smaller than the trap zone radius. Therefore, it is advisable to 
omit the quadratic terms in the right-hand side of equation (7) as the ones whose 
order of magnitude is smaller. At that the system of equations (6), (7) and (9) takes 
on the Hamiltonian form with the Hamiltonian 
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However, it should be noted that the system of equations (6), (7) and (9) is written 
using the non-canonical coordinates and the integral (8) is the Casimir. The corres-
ponding simplex matrix for the system of equations (6), (7) and (9) is as follows: 
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It is easy to verify that the symplex matrix (11) satisfies the Jacoby identity, and 
the right side of the linearized equations (6), (7) and (9) is a product of the simplex 
matrix and the Hamiltonian gradient. Both physical meaning of the Hamiltonian 
(10) and correspondence of the above-deduced equations to the previously con-
structed theory of a synoptic vortex evolution on the ß-plane become evident after 
the following transformations of equations (6), (7) and (9). Let us introduce 

U =
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dY1 . Time differentiation of (6) yields  

VRRV
dt

dYR
dt

dUR )()(2 2
22

2
11

22
22

2
1 ωωππωπ +−=−= ,                      (12) 

( )13.
8

)2(
8

)(

)(2

2
12

11
2
2

2
1

2
22

2
22

2
11

22
22

2
1

RRRRRURR

U
dt

dXR
dt
dVR

β
πωβπωωωπ

πωπ

+−++=

=−−=
 

Thus, the following system of equations is intended for obtaining velocity of the 
trap zone center and its vorticity movement: 
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Hamiltonian (10) is also expressed by the variables of the system of equations 
(14) ‒ (16)  
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The system of equations (14) ‒ (16) takes on the Hamiltonian form with Ha-
miltonian (17) in case the following simplex matrix is introduced: 
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Hamiltonian (17) is represented as a sum of three terms. The first and the 
second ones are equal   
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and represent the vortex translational kinetic energy and the virtual mass energy 
arising at flowing around the trap zone. The sense of the last term in equation (17) 
becomes evident if the energy of the liquid particles’ rotation within the trap zone 
is calculated. At that it is sufficient to retain only the basic terms in the expression 
for the current function having neglected different locations of the vortex core and 
the trap zone centers. In such an approximation the stream function is as follows: 
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Using expression (20) we obtain  
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that (taking no account of the time-independent constant in formula (21)) provides 
the latter term in Hamiltonian (17). Thus, it follows from the general theory [5] that 
Hamiltonian (17) constitutes the energy. 

The above-represented Hamiltonian formulation of the problem of a vortex 
evolution on the ß-plane is constructed for the originally circular vortex with con-
stant vorticity. However, the above interpretation of the Hamiltonian as a sum of 
the energies of the vortex translation, the liquid particles’ rotation within the trap 
zone and the liquid particles flowing around the trap zone makes it possible to ge-
neralize the above-obtained results and to apply them to the vortices which are of 
rather arbitrary radial-symmetric initial form. The stream function within the trap 
zone is approximately of the following form 

RrRrr ≤−+= ),(
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where the trap zone radius and its vorticity are denoted as R and ω , respectively, 
and Ψ0(r) is the initial stream function. The energy of the liquid particles’ rotation 
within the trap zone is preset by the following expression 
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the Hamiltonian representing the vortex energy has the form 
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and the simplex matrix is the same as before 
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where circulation on the trap zone boundary is now prescribed by the following 
expression  

dR
RdRR )(2 02 ψπωπ +=Γ  .                           (26) 

At that the equations describing the vortex evolution takes on the following form  
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since it follows from equations (23) used for the rotation energy and (22) – for the 
stream function that  
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where Γψ  is the stream function value on the trap zone boundary. 
 

Vortex motion and oscillations. Equations (27) and (28) constitute the mo-
mentum balance and completely correspond (except for the terms with the time 
derivative) to the equations describing the vortex motion on the ß-plane deduced in 
[1, 2]. The summands with the time derivative correspond to the momentum 
change both of the very vortex and the added mass. The terms proportional to the 
circulation on the trap zone boundary represent the Zhukovsky force influencing 
the vortex. Finally, the integral in equation (28) is a component of the Rossby force 
arising due to the ß-effect. Relation (30) shows that the Rossby force role consists 
in converting the rotation energy into the translation one. In contrast to [1, 2], equa-
tions (27) and (28) do not include the wave resistance force since radiation of the 
Rossby waves during the vortex motion is not taken into account in the considered 
model that, no doubt, excludes regular vortex displacement along the meridian. As 
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a result, the model allows us to describe only the vortex zonal motion and oscilla-
tions of the trap zone and the vortex core centers around the equilibrium position. 
Note that just application of the method in [4] provides substantiation of including 
the inertial terms in the vortex motion equations used for a particular case of a vor-
tex with a circular core of constant vorticity and permits to generalize this result for 
the case of a vortex with arbitrary configuration. 

The system of equations (27) – (29) has a stationary solution reflecting balance 
of the Zhukovsky and Rossby forces, and describing the vortex zonal translation. 
At that the velocity meridian component is equal to zero and the vortex moves to 
the west. Zonal component of the vortex motion velocity U depends on the trap 
zone radius R and its vorticityω . Proceeding from the notions in [1, 2] let us as-
sume that the trap zone boundary is a stream function separatrix in a moving coor-
dinate system associated with the vortex. Then it follows from (3) and (4) that 

 

Rcπ40 =Γ=Γ ,                                                   (31) 
 

where Uс −= is a value of velocity of the vortex uniform motion. In such a case 
equation (28) and formula (26) connect the vortex uniform motion velocity c and 
its radius R with the trap zone vorticity 0ω  which is proportional to the vortex me-
ridian translation relative to its initial position. 

Let us return to the equations (6), (7) and (9) which permit to interpret the vor-
tex zonal self-propagation in a new way. It is easy to get convinced that stationary 
movement of the vortex core and the trap zone can be directed only zonally and in 
such a way that the trap zone and the vortex core centers should be located on one 
and the same meridian and the trap zone vorticity should not change in 
time, 1ω = 0

1ω . As a result, the equations (6), (7) and (9) can be reduced to two equa-
tions 
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Having excluded the vortex motion velocity с from equation (32) we find that  
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and, thus, the vortex core center is shifted to the south relative to the trap zone cen-
ter. Due to this circumstance and the ß-effect contribution, the vortex self-
propagation to the west occurs. 

Now let us consider the characteristics of the vortex core and the trap zone 
centers’ oscillations. First, note that, owning to (26) and (31), the circulation Г in-
cluded in equations (27) and (28) can be represented as a function of the trap zone 
vorticity: 
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In view of (23), the condition of the vortex uniform motion following from equa-
tion (28) similarly yields  
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Note that the vortex radius in all the above formulas does not change in time since 
the oscillation frequency is assumed to be much higher than the characteristic time 
of the vortex evolution. 

In view of (33) and (34), equations (27) and (28) are as follows 
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Having used (29) for making a closed system of equations, and combining (29) 
and (35) we find 
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Substituting (37) into (35) and using (29) once again, we obtain the nonlinear 
equation (for description of oscillations) which can be integrated in the elliptic 
functions. Note that frequency of small oscillations of the vortex motion velocities 
σ is derived from the linearized equation: 
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It would be interesting to compare the expression obtained for frequency of the 
vortex and the trap zone centers’ oscillations with the results of numerical simula-
tions. 

 
Conclusion. Application of the “elliptic approach” [4] to studying evolution of 

a single synoptic vortex on the ß-plane has permitted to generalize the earlier-
proposed theory by supplementing balance of the forces influencing the vortex 
with the inertial summands. It is shown that the deduced evolution equations are of 
the Hamiltonian form in case the non-canonical character of the used set of va-
riables is taken into account. The evolution equations describing the vortex core 
and the trap zone center motion for a particular case of the initially circular vortex 
with constant vorticity, are written in two ways: the “Lagrangian” form (the va-
riables are the trap zone vorticity, and the coordinates of the vortex core and the 
trap zone center) and the “Euler” one (the variables are the vortex motion velocity 
components and the trap zone vorticity). Analysis of the “Lagrangian” solution 
permits to interpret the vortex self-propagation on the ß-plane without basing on 
the force balance. It is revealed that the vortex core and the trap zone centers are 
displaced along the meridian; and their synchronous movement is similar to trans-
lation of a pair of point vortices with identical intensity but different signs. 

Being supplemented with the inertial terms, the vortex evolution equations 
provide a possibility of occurring of high-frequency oscillations of the vortex mo-
tion velocity actually observed in numerical simulations. The represented theory 
allows one to calculate frequency of such oscillations. 

In the present study, the process of the Rossby waves’ radiation by a moving 
vortex was not deliberately taken into consideration. If one describes only the vor-
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tex smooth evolution at which the inertial terms are negligible, the effect of the 
Rossby wave radiation can be taken into account by including the wave resistance 
force calculated in [1, 2] to the total force balance. However, oscillations of the 
trap zone center can change the radiation conditions, therefore a more complete 
problem requires additional research. 

Finally, note that actually a “circular approach” (but not an “elliptical one”) 
was applied for the form of the vortex core and the trap zone. In spite of bulky 
computations, it seems interesting to consider a more flexible elliptical approach 
which can assess the vortex stability. 

 
The work is performed within the framework of the state task № 0827-2014-

0011 "Research of regularities of the marine environment changes based on the 
operational observations and the data obtained from the system of nowcast, fore-
cast and reanalysis of the marine water areas’ state” (code “Operational oceanogra-
phy”). 
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