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Dynamics of long sea waves in the channels of variable depth and variable rectangular cross-section 
is discussed within various approximations – from the shallow water equations to those of nonlinear 
dispersion theory. General approach permitting to find traveling (non-reflective) waves in inhomoge-
neous channels is demonstrated within the framework of the shallow water linear theory. The appro-
priate conditions are determined by solving a system of ordinary differential equations. The so-called 
self-consistent channel in which the width is connected with its depth in a specific way is studied in 
detail. Within the linear theory of shallow water, a wave does not reflect from the bottom irregulari-
ties. The wave shape remains unchanged on the records of the wave gauges (mareographs) fixed 
along the channel axis, but it varies in space. Nonlinearity and dispersion lead to the wave transfor-
mation in such a channel. Within the framework of the shallow water weakly nonlinear theory, the 
wave shape is described by the Riemann solution, and the wave breaks (gradient catastrophe) quicker 
in the zones of decreasing depth. The modified Korteweg – de Vries equation describing evolution of 
a solitary wave of weak but finite amplitude in a self-consistent channel, the depth of which can vary 
arbitrary, is derived. Some examples of a solitary wave transformation in such a channel are analyzed 
(particularly, a soliton adiabatic transformation in the channel with the slowly varying parameters, 
and a solitary wave fission into the group of solitons after it has passed the zone where the depth 
changes abruptly. The obtained solutions extend the class of those represented earlier by S.F. Dotsen-
ko and his colleagues.  
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1. Introduction 
Propagation of long tsunami-like waves in narrow bays and straits may result 

in wave field intensification and abnormal runup. Such situations were observed, 
for instance, during the recent catastrophic tsunami at the Samoan Islands in 2009 
[1, 2] and in Japan in 2011 [3]. Significant wave intensification also occurs along 
the submarine canyons, and this was pointed out during the Indian Ocean tsunami 
in 2004 [4]. 

In such cases wave dynamics can be described mathematically in channel ap-
proximation for the water flow characteristics averaged over the cross-section. 
One-dimensional equations obtained in this approximation speed up the calcula-
tions, especially when the parameters of approaching waves are unknown (as it 
often happens in practice) or a bathymetry of a channel is known with a poor accu-
racy. As a result, it is possible to obtain rapid assessment of wave parameters on 
the basis of a small number of parameters characterizing the problem. 
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This approach to the long wave modeling was the main one in S.F. Dotsenko’s 
research of the recent years. On the basis of the results of this research he published 
several works in partnership [5–7]. We point out in particular the paper [6] on the 
propagation of long waves from the Sea of Marmara to the Black Sea through the 
Bosporus, which is important for the channel theory application. Channel theory, 
which demonstrated its effectiveness for solving real problems, turned out to be 
important also for explaining the abnormal wave intensification and runup in Pago-
Pago Harbor during the 2009 tsunami at the islands of American Samoa [8]. 

It is possible to find accurate solutions describing nonlinear wave runup on the 
shores of narrow bays and straits within the framework of shallow water channel 
theory [9–11]. Moreover, it is shown that this theory explains the dynamics of 
freak waves on the shore and correlates well with their observations [12]. We point 
out in particular the fact that nonlinear waves in inclined channels with parabolic 
cross-section are non-reflective and do not lose energy during the propagation [13]. 
Mathematically, the validity of channel theory application for solving such prob-
lems was proved in [14]. From the practical point of view, its accuracy is assessed 
by a comparison with direct numerical solution of shallow water equations for 
waves in the bay of Alaska [15–17]. 

In the present paper, which is a tribute to S.F. Dotsenko, we would like to give 
several examples of channel theory application for describing the dynamics of 
wave processes in the channels with rectangular cross-section and variable depth 
and width. The case of so-called self-consistent channel, when within the frame-
work of shallow water linear theory wave reflection from the bottom obstacles is 
absent, was selected. 

 
2. Traveling waves in the channels with variable cross-section 
Usually, when it comes to the waves in inhomogeneous media, it is meant 

energy losses for reflection from the bottom irregularities [18]. Restriction of wave 
propagation along the main channel axis provides localization of energy transfer 
(as there is no cylindrical attenuation and diffraction losses), but does not prevent 
backscattering if the channel depth and width vary arbitrarily. Nevertheless, for 
special channel geometry the wave will not reflect, and it can propagate over large 
distances with no energy losses. We demonstrate this using the example of propa-
gation of linear long waves in a rectangular channel with varying cross-section 
(Fig. 1). 

 
 
Fig. 1. Channel geometry: on the left – transversal projection, on the right – longitudinal projection 
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Initial equation for the analysis is the wave equation derived in [6, 19], 

0η)()(η)( 2

2

=







∂
∂

∂
∂

−
∂
∂

x
xhxB

x
g

t
xB ,                                 (1) 

 

where h(x) is unperturbed depth; B(x) is variable width of a channel; g is gravita-
tional acceleration and η(x, t) is vertical displacement of water surface. 

The main idea in the search for solutions of wave equations in the form of 
traveling (non-reflective) waves comes down to the transformation of initial equa-
tion (1) with variable coefficients into wave-type equation with constant coeffi-
cients. For this purpose we perform the following substitute of water displacement 
(1): 

( ) ( ) [ ])(τ,,η xtxAtx Φ= ,                                              (2) 
 

where A(x), Φ(t,τ) and τ(x) are three unknown functions to be determined. Then the 
wave equation (1) transforms to Klein – Gordon equation with variable coefficients 
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Let us consider conditions at which this equation will have constant coeffi-

cients. Wave operator in the first square bracket (d’Alembertian) will have constant 
coefficients if to assume that 
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which determines the known relation for the time of wave propagation over uneven 
bottom 
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Here c(x) is the wave celerity. In the second square bracket of equation (3) the 
term should be equal to zero (otherwise the dissipative term appears in the 
Klein-Gordon equation); this leads to a simple equation which can be inte-
grated explicitly: 

 

const~)( 2/14/12/1 =BAhcBA .                                      (6) 
 

Relation (6) is the well-known Green’s law for the waves in liquid with a smooth 
variation of a channel depth and width. However, in our case we do not impose 
conditions on the smoothness of channel characteristics variation. 

In order that in the equation (3) all the coefficients to become constant, the last 
term should be proportional to AB: 
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where P is arbitrary constant. As a result, equation (3) reduces to the Klein-
Gordon equation with constant coefficients 
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and the existence of traveling waves within its framework becomes obvious. 
After substituting expression (6), equation (7) becomes an ordinary differential 

equation for finding non-reflective configurations of the channel with rectangular 
cross-section: 
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where the wave celerity )()( xghxc =  is used instead of channel depth h(x) to 
simplify the recordings. As the equation (9) links two unknown functions B(x) and 
c(x) and, besides, two constants appear when integrating it, the number of non-
reflective configurations of a channel is unlimited. The obtained configurations are 
very reasonable in terms of applicability of the shallow water theory: there are no 
singular solutions; the channel can be of unlimited length (these questions are dis-
cussed in [20]). In our opinion, this is exactly why a significant intensification of 
tsunami waves takes place in a series of cases mentioned in introduction. 

If 0≠P , then dispersive waves are the solution of the equation (8) and wave 
train can spread or, conversely, compress into a freak wave [21]. The dispersion 
here is related to the channel geometry, not to the known depth-related dispersion 
of waves on the water. 

Let us consider the simplest channel configuration 
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for which P = 0. The basin depth can vary arbitrarily, including abrupt (step-like) 
variations. We call such channel a self-consistent one. In this case a propagating 
wave is described by the simplest expression 
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where A0 is a constant amplitude of a wave and Ф(t) describes wave shape in a 
fixed point x0. Thus, although the channel has a variable cross-section (its area is 
proportional to h-1/2), wave amplitude remains constant and only the time of wave 
propagation along the channel varies. As a result, the wave records appear to be the 
same in different points of the channel, though the wave shape changes in space. 
 

3. Dispersion and nonlinearity effect on waves in a self-consistent channel 
As the wave shape (11) does not vary with the distance in the self-consisted 

channel (10) within the framework of shallow water linear theory, nonlinear and 
dispersive effects are accumulated. In the general case it is natural to expect that 
nonlinear and dispersive corrections will not be completely non-reflective, so that 
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the process becomes rather complicated for analytical analysis. Nevertheless, if one 
assumes that the channel depth changes smoothly, then the reflection is certainly 
small and it is possible to derive evolutionary equation for the traveling wave using 
the asymptotic method. It was repeatedly quoted in literature, and we will quote it 
without derivation. It has the form of Korteweg – de Vries equation [22]: 
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In the case of self-consistent channel, by virtue of the expression (10) the last 
term disappears from the equation (12) but Korteweg – de Vries equation remains 
the one with variable coefficients. As an example, we consider the transformation 
of a solitary wave (soliton) if the depth varies very smoothly. Soliton is described 
locally by the same expression as in the basin of constant depth: 
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with a characteristic width 

A
hh~λ .                                                 (14) 

 

Soliton amplitude is found from the law of conservation of energy because the re-
flection is absent: 
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For the self-consistent channel this results in the following law of soliton amplitude 
variation: 
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which is weaker than in the channel of constant width 1~)( −hxA [22]. According 
to the equation (14), soliton length is 6/11~)(λ hx . 

Thus, the effect of dispersion and nonlinearity results in a traveling wave 
transformation, and if a soliton moves in shallow water its amplitude and length 
increase. Moreover, wave shape also changes due to the fact that the volume of 
water contained in a soliton (mass) varies with depth: 
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while a gross mass must be constant. This means that a tail of positive polarity is 
formed behind the soliton if the wave propagates onshore and a tail of negative one 
– if it moves offshore. However, we will not dwell on this. 

PHYSICAL OCEANOGRAPHY  NO.3  (2017) 23 



 

4. Soliton transformation on a bottom step 
If the channel depth and width vary significantly, then the transition zone may 

be approximated by a bottom step. As the channel is a consistent one, in the linear 
theory of long waves the reflection from the bottom step is absent and the wave 
passes over it without deformation. Weak nonlinearity and dispersion have no time 
to “spoil” the process at such short distances. However, upon further propagation 
behind the bottom step in a channel of constant depth and width, nonlinearity and 
dispersion lead to the wave transformation. This can be described in detail within 
the framework of Korteweg – de Vries equation. This process in a channel of con-
stant cross-section is discussed in many papers, and here we mention only [22]. 
Analytical approach is based on the following kinematic considerations. Let the 
channel depth before the step be h1, and after it – h2. Correspondingly, the channel 
width before the step is 2/1

11 ~ −hB , and after it – 2/1
2112 )/( −= hhBB . Incoming 

soliton before the step (at a fixed time) is described by the expression (13) 
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Wave amplitude does not change at the step in a self-consistent channel and the 
wavelength decreases proportionally to 2/1

12 )/( hh , because temporal duration re-
mains the same during the transition from one layer to another. This means that after 
the bottom step and immediately prior to it the wave is described by the expression 
which is analogous to the expression (18) but with different duration: 
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and wavelength differs from the one that a soliton with the same amplitude should 
have after the step. As a result, the relationship between dispersion and nonlineari-
ty, characterized by the Ursell number [22, 23]: 
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is violated. For the soliton (13) with the wavelength (14) Ursell parameter is equal 
to one. Now for the wave (19) Ursell parameter is 
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Since the wave after the bottom step has a soliton-like shape (but it is not a 
soliton), the calculation of the amplitudes of the emerging solitons is relatively 
simple (for more details, see [22, 23]) and the formula for the secondary soliton 
amplitudes has the following form: 
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where N is the number of solitons, which is found as minimum positive value of 
the expression in square brackets in the relation (22). Particularly, the amplitude of 
the first (leading) soliton is 
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If after the bottom step the channel depth is very small (h2<<h1) and the width, 
respectively, is large, then the amplitude of the first soliton tends to two (and in the 
channel of constant cross-section it tends to four, see [22]). The number of solitons 
is rather high at that.  

If the wave propagates towards the deep water (h2>>h1), then 
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In this case the amplitude of soliton is small and only one soliton is formed. De-
pendence of generated soliton amplitude on depth changes (according to the ex-
pression (22)) is given in Fig. 2. 

 

 
 
Fig. 2. Dependence of generated soliton amplitude on depth changes 

   
Thus, at large distances even a weak nonlinearity and dispersion can signifi-

cantly distort the wave process. In the self-consistent channel reflection is absent 
and all the effects of transformation are due to nonlinearity and dispersion only. 

 
5. Conclusion 
The given paper is a tribute to S.F. Dotsenko, who was a well-known expert in 

the field of water wave motion (including tsunamis). In recent years he and his 
team have published several works on the long wave channel theory. This subject 
is of special interest for the authors of this paper, and we present here a series of 
new solutions of the channel theory. First of all, this is the existence of traveling 
waves in a channel of variable cross-section within the framework of linear shallow 
water theory. Particularly, the so-called self-consistent channel, where Green’s fac-
tor remains equal to one regardless the channel depth and width variations, is stud-
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ied. In this case the wave does not change its shape during the propagation and in-
homogeneity of the channel affects the wave propagation time only. The effect of 
nonlinearity and dispersion radically transforms the nature of the wave process at 
large distances. If the depth varies slowly, then the soliton changes adiabatically as 
it propagates. In this case, its amplitude and wavelength change, as well as a weak 
tail is generated behind. If the channel contains a bottom step, then when the wave 
propagates towards the shallow water behind the step, the initial perturbation disin-
tegrates into solitons. Explicit formulas for the amplitudes of the generated solitons 
are given. The presented results attest to interesting features of wave dynamics in 
narrow bays and straits of variable cross-section. 
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