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When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale 
turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the 
Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to con-
tribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless 
basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of 
linear approximation for the vertical velocity amplitude of internal waves has complex coefficients 
when current velocity component, which is transversal to the wave propagation direction, depends on 
the vertical coordinate (taking into account the rotation of the Earth). Eigenfunction and wave fre-
quency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and 
wave damping decrement are calculated in the linear approximation. At a fixed wave number damp-
ing decrement of the second mode is larger (in the absolute value) than the one of the first mode. The 
equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current 
velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. 
The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area 
due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial 
one. Termination of the second mode dispersive curves takes place at higher frequency than the one 
of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is 
shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from 
zero if the transversal component of current velocity depends on the vertical coordinate. In this case, 
the Stokes drift speed in the second mode is lower than in the first mode only in the pycnocline, out-
side the pycnocline their values are comparable in absolute value. The longitudinal component of the 
Stokes drift velocity of 15-min second mode internal waves observed in the field experiment during 
the 44th voyage of R/V “Mikhail Lomonosov” on the northwestern shelf of the Black Sea is by an 
order of magnitude greater than the transversal one. Vertical wave fluxes of the momentum also differ 
from zero and can be either comparable with the corresponding turbulent fluxes or exceed them.  
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Introduction. Vertical exchange plays a key role in a formation of oxygen and 

hydrogen sulfide concentration fields in the Black Sea. Mixing processes perform 
the ventilation of waters and maintain a stable functioning of the ecosystem. Usual-
ly, vertical exchange in a stratified marine environment is associated with small-
scale turbulence which is generated by hydrodynamic instability of currents and 
breaking of internal waves. The internal waves play an important role in dynamic 
processes at a sea shelf as energy sources that generate these waves are constantly 
presented. These sources are the following: atmospheric pressure fluctuations, 
wind stresses on the sea surface, interaction of currents and tides with inhomogene-
ities of a bottom topography, instability of currents. 
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The effect of small-scale turbulence on the internal waves was considered in a 
series of works [1-3]. It is shown that internal waves damp when turbulent viscosi-
ty and diffusion are taken into account. Vertical wave fluxes of heat, salt and mo-
mentum differ from zero at that [4]. In [5, 6] the mentioned effects were considered 
at the current with vertical shift of speed. It is revealed that without taking into ac-
count the rotation of the Earth, critical layers are absent due to the low velocity of 
current (under 0.15 m/s); its effect is manifested on the magnitude of the wave 
fluxes. It is of interest to find wave flux of momentum in a vertically-inhomoge-
neous current for inertial-gravity internal waves (with regard to the Earth rotation). 
It is noteworthy that the vertical flux of momentum differs from zero in this case, 
even when turbulent viscosity and diffusion are ignored. 

 
The statement of the problem. Free internal waves in a boundless basin of 

constant depth are considered taking into account the rotation of the Earth. Two 
current speed components depend on vertical coordinate. Dispersion relation and 
vertical distribution of internal wave amplitude are calculated in the linear approx-
imation. The equation for the vertical speed amplitude has complex coefficients, 
therefore the eigenfunction of internal waves and wave frequency are complex, i. e. 
a weak wave damping takes place. Vertical wave fluxes of momentum and Stokes 
drift speed are defined in the second order of amplitude. Hydrodynamics equations 
in the Bussinesq approximation for wave disturbances have the following form: 
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where u, v, w are two horizontal and vertical components of current wave speed, re-
spectively; ρ, P are wave disturbances of density and pressure; 0 ( )zρ  is a mean den-
sity profile; x, y, z are two horizontal and a vertical coordinates, z axis is directed ver-
tically upwards; f  is the Coriolis parameter; 0 0( ), ( )U z V z  are two components of 

mean current speed; 
D
Dt

 operator action is revealed by the following formula: 

0 0( ) ( )
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= + + + + +
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. Using the geostrophic relationships [7], 

we make an estimation of the horizontal scales of mean density variations:  
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Vertical profiles of current speed components and of their derivatives are rep-
resented in Fig. 1. U0, V0 maximum values of current speed components vertical 
gradients make up 0.019 and 8.086·10-3 1с− , respectively. Lx = 1.16·107 m, Ly = 
= 5·106 m horizontal scales of density variation are much more than the wave 
length, therefore we neglect the horizontal density variation. 

 

 
 
Fig. 1. Vertical profiles of: V0, U0 current speed components – a; '

0
'

0 , UV gradients of current speed 
components – b 

 
Boundary condition on the sea surface (z = 0) is a rigid lid condition which fil-

ters the internal waves from the surface ones [8]: 
 

w(0) = 0.                                                          (6) 
 

Boundary condition on the bottom is an impermeability condition: 
 

w(–H) = 0.                                                             (7) 
 
Linear approximation. We seek solutions for the linear approximation in the 

following form: 
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where с. с. are complex conjugate terms; A  is an amplitude multiplier; θ  is a 
wave phase, / , /x k tθ θ ω∂ ∂ = ∂ ∂ = − , k is a horizontal wave number,ω  – is a 
wave frequency. It is assumed that the wave propagates along x  axis. After substi-
tuting (8) into the system (1) – (5), the relation of amplitude functions 

10 10 10 10, , ,u v P ρ to 10w  function follows: 
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10w  function satisfies the equation 
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where 2 0

0 (0)
dg

N
dz
ρ

ρ
= −  is a square of the Brunt – Vaisala frequency. 

Boundary conditions for 10w :  
at z = 0                                    10 0w = ,                                                (13) 

 

at z H= −                              10 0w = .                                                 (14) 
 

Equation (12) has complex coefficients with a small imaginary part, so we 
proceed to dimensionless variables (dimensionless physical values are denoted by a 
prime): 
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where H is a sea depth; *ω  is a characteristic wave frequency; 0*V  is a characteris-
tic value of current speed which is transversal to the direction of wave propagation. 

Then, the equation (12) takes the following form: 
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(16) 
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where 0* */V Hε ω=

 
is a small parameter. Imaginary part of coefficients in the 

equation (16) is of ε order, therefore the one of 10w solution is also proportional 
toε , i. e. the solution of the equation (16) is represented as 
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sented in the form of expansion with respect to ε  parameter: 
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Boundary conditions for /
1w  function 

 

/
1 (0) 0w = ,        /

1 ( 1) 0w − = .                                          (22) 
 

PHYSICAL OCEANOGRAPHY ISS. 4   (2017) 7 



 

After the transition to dimensional variables, equation (19) takes the form 
 

2 2
0 0 0

2 2 2
0 0( )

d w dw dU f
k

dz dz dz f
− +

Ω Ω −
 

2
2 20 0

0 02 2 2
0

( ) 0,
( )

kw d U
k N

f dz
+ −Ω +Ω =

Ω −

 
 
 

                      (23) 

 

where 0 0 0kUωΩ = −  is a wave frequency with the Doppler shift. The equation 
(23) should be supplemented by boundary conditions 
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In the absence of ( 0 0U = ) current boundary problem (23), (24) at k fixed 
wave number has a discrete spectrum of frequencies lying in 0 max( )f Nω< <  
interval. Each k value corresponds to a certain frequency value for the given mode. 
At 0 ( ) 0U z ≠  the discrete spectrum can be absent [9], which is due to a presence of 
singularities in the equation (23) at 0 0Ω =  and 0 fΩ = ±  (hydrodynamically sta-
ble currents are considered). In this case there is a critical layer [10] where 0 0Ω =  
(phase velocity of the wave is equal to the one of current at that). The fact that the 
rotation of the Earth is taken into account leads to critical layer shift to the layer 
where 0 fΩ =  [11]. The effect of this critical layer on the dispersion curves is il-

lustrated by the calculations given below. Let 
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The equation (25) is reduced to a self-adjoint form after multiplying the both parts 
by ( ) exp( ( ) )p z a z dz= ∫ : 
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After the transition to dimensional variables, the equation (21) is transformed 

to the following form: 
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Boundary conditions for 1w  function  
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from here the expression for 1σ  is found 

1 ,
q
r

σ =  

where  
0

0 0 0 0
0 02 2

0 0

( )
( )H

pw dV dU dVd k
q ifk w w dz

f dz dz dz dz−
= +∫

Ω − Ω

 
 
 

, 

 

20
2 2 2 20 0

0 0 02 2 2 2
0

2 2 20
0 0 0 0

2 2 2 2
0 0

2 ( ) ( )
( )

(3 )
.

( )

H

H

pkw d U
r w k N f f dz

f dz

f pkw dw dU f
dz

f dz dz

−

−

= Ω − + Ω + −∫
Ω −

Ω −
− ∫

Ω − Ω

  
  

    

 

1σ  value is purely imaginary, i. e. 1 / iδω σ=  is a decrement of wave damping. 
 
Nonlinear effects. The speed of the Stokes drift of fluid particles is deter-

mined by the formula [13] 

0
s ( ) ,
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where u  is a field of the Euler wave velocities; the bar above the formula denotes 
the averaging over the wave period. The Stokes drift speed horizontal component 
directed along the wave vector has the following form (with the accuracy to the 
terms quadratic by the wave amplitude): 
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where 1 exp( )A A tδω= ⋅ . 
The horizontal component of the Stokes drift speed, which is transverse to the 

wave propagation direction, is determined by the formula 
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In the presence of an average current (its 0V velocity component, transversal to the 

wave propagation direction, depends on vertical coordinate), sv  value differs from 
zero. 

Let us find the vertical wave fluxes of uw , vw  momentum taking into account 
the expansions (17), (18):  
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vw  vertical wave momentum flux differs from zero also in the absence of current. 
uw  momentum flux differs from zero only in the presence of mean current whose 
transversal to the wave propagation direction 0V  velocity component depends on 
the vertical coordinate. 
 

The results of calculations. To determine the vertical wave fluxes of momen-
tum we use the results of the third stage of 44th voyage of R/V “Mikhail Lomono-
sov” (the Black Sea northwestern shelf). According to the data of gradient-
distribution temperature sensors (GRAD instruments) the time course of vertical 
displacements of the temperature isolines is constructed (Fig. 2) [14]. The instru-
ments were placed one above the other and crossed the following layers: 5-15 m 
(the first instrument), 15-25 m (the second one), 25-35 m (the third one), 35-60 m 
(the fourth one). It can be clearly seen that strong 15-min oscillations in 25-60 m 
depth interval are in antiphase with oscillations in 15-25 m interval. This fact indi-
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cates the presence of the second mode internal waves. The maximum amplitude of 
these waves made up 0.5 m and this allowed us to find 1A  normalizing factor. In-

deed, the vertical velocity is linked with ζ  vertical displacement by 
d

w
dt
ζ
=  rela-

tion. Hence ζ  and an expression for 1A  are found: 
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Fig. 2. Temporal course of vertical displacements of temperature isolines 

 
It follows from (36) that the maximum ζ  corresponds to the maximum of 

0 0/w Ω  function, the maximum by modulus value of this relation (according to the 

calculation data) is reached precisely in the point of 0w  function maximum. Eigen-
function of the second mode internal waves has its maximum at 50 m depth 
(Fig. 3, a), i. e. it corresponds to the maximum elevations according to the experi-
ment data (Fig. 2). The boundary value problem (23), (24) according to 0w  defini-
tion is solved numerically by the implicit Adams scheme of the third order of accu-
racy. Vertical profile of the Brunt – Vaisala frequency is shown in Fig. 3, b. At the 
fixed wave frequency k wave number is determined using the shooting method (be-
cause of necessity of satisfying the boundary conditions (24)). Dispersive curves of 
the first two modes are represented in Fig. 4, a. It is noteworthy that in low-
frequency area dispersive curves do not reach the inertial frequency, moreover, the 
minimum frequency value of the second mode is higher than of the first one. This 
is due to the singularity in the equation (23) where the wave frequency with the 
Doppler shift is equal to the inertial one. We determine the funcntion 1w  by solving 
the inhomogeneous boundary value problem (28), (29). From the solvability condi-
tion (30) of this boundary value problem, we find the complex correction to the 
wave frequency, i. e. δω wave damping decrement. 15-min internal waves of the 
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second mode have δω = –1.12·10-5 rad/s. The boundary value problem (28), (29) is 
solved numerically according to the implicit Adams scheme of the third order of 
accuracy. The only solution, orthogonal to 0w  one of the corresponding boundary 
value problem (23), (24), is found. Damping decrement dependence on the wave 
number is shown in Fig. 4, b. In the low-frequency area this dependence behaves 
differently for the first and the second mode. This is due to the termination of dis-
persive curves in the low-frequency area; moreover, the termination of the second 
mode takes place at higher frequency than the one of the first mode. With the fixed 
wave number damping decrement of the second mode is greater (by the absolute 
magnitude) than the one of the first mode. 

 

 
Fig. 3. Eigenfunction of 15-min internal waves of the second mode – a and vertical profile of the 
Brunt – Vaisala frequency – b 
 

 
Fig. 4. Dispersive curves of the first and the second modes – a; the dependence of wave damping 
decrement on the wave number – b. The first mode is depicted by the solid lines, the second one – by 
dashed lines 

 
Vertical profiles of the Stokes drift speed horizontal component normalized to 

the square of the maximum wave amplitude for the first and the second modes of 
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15-min internal waves are shown in Fig. 5. The profiles of the Stokes drift speed 
(33) which is transversal to wave propagation direction is given in Fig. 6. The 
Stokes drift speed transverse component is by an order smaller than the longitudi-
nal one. The Stokes drift speed of the second mode is lower than the one of the first 
mode only in a pycnocline at that. 

  
Fig. 5. The Stokes drift speed for the first (solid line) and the second (dashed line) modes 
Fig. 6. The Stokes drift speed horizontal component (which is transversal to the wave propagation 
direction) for the first (solid line) and the second (dashed line) modes 

 

  
 

Fig. 7. Profiles of vertical momentum fluxes (solid line – the first mode, dashed line – the second 
mode, dotted line – turbulent flux) 
Fig. 8. Profiles of wave vw  and turbulent / /v w  vertical fluxes of momentum (for notations see Fig. 7) 

 

Vertical profiles of wave uw  and turbulent / /u w fluxes of momentum are giv-

en in Fig.7. Turbulent flux of momentum was determined by / / 0
z

dU
u w K

dz
=− , the 
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coefficient of vertical turbulent exchange – by 4 10,93 10z cK N− −≅ ⋅  m2/s ( cN , cy-
cle/h is the Brunt – Vaisala frequency) [15].  Wave flux was normalized to the 
square of wave amplitude. In the upper 10-meter layer turbulent flux exceeds the 
wave one, in deeper layers these fluxes are comparable by the magnitude. Moreo-
ver, in the pycnocline wave flux dominates. The profiles of vertical momentum 

fluxes vw  and / / 0
z

dV
v w K

dz
=−  are represented in Fig. 8. In the upper 40-meter 

layer the flux of the second mode is smaller than the one of the first mode. Turbu-
lent flux prevails on the wave one everywhere, except for the pycnocline where it 
is comparable in value with the first mode flux. 

 
Conclusions. 
1. Vertical wave fluxes of momentum of inertial-gravity internal waves differ 

from zero in a baroclinic flux and can be compared with turbulent fluxes (or exceed 
them). 

2. Wave flux uw  differs from zero only in the presence of current, whose ve-
locity component (which is transversal to the wave propagation direction) depends 
on the vertical coordinate. In this case the Stokes drift velocity component, which 
is transversal to the wave propagation direction, differs from zero and is smaller 
than a longitudinal one by an order of magnitude. 

3. Dispersive curves of internal waves of two first modes terminate in a low-
frequency area which is due to the critical layer effect where wave frequency with 
the Doppler shift is equal to the inertial one. Termination of the second mode oc-
curs at higher frequency that the one of the first mode. 
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