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Numerical hydrodynamic modeling of the Sea of Azov is done for 2013–2014 on basis of the 
Princeton Ocean Model at presetting of real atmospheric impact (the SKIRON model). The 
hydrodynamic model was applied in numerical studies to analyze the evolution of pollution on the 
basis of transport and diffusion equation solution. Level-2 data from MODIS at satellite Aqua with 1 
km spatial resolution were used in the work. The following parameters were calculated according to 
satellite data: the ratio of normalized brightness of the light coming from under the water surface in 
two 531 and 488 nm spectral channels and light backscattering coefficient by the of the suspension 
particles at 555 nm wavelength. These data determine the presence of suspended matter (mineral 
suspended matter from river discharges or rising from the bottom as a result of a strong wind), and 
suspended matter of biological origin (coccolithophorides bloom). New model algorithms are applied 
to analyze the consistency of data obtained by remote sensing of the sea surface from space modeling 
solutions and their combinations. The paper discusses methods of sharing information, assessment of 
model forecast quality depending on the intervals between satellite data assimilation. It is shown that 
a serial scheme of data assimilation improves the pollution forecast by the model, even when the 
satellite images are not stable. 
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Introduction 
Ecological problems of the Sea of Azov are given special attention in relation 

to the continuing significant anthropogenic impact. Pollution scale becomes threat-
ening to the ecosystem and results in extremely negative consequences [1]. So, fer-
rous and nonferrous metals industries [2–4] are functioning on the Sea of Azov 
coast. Water transport and dredging, providing the normal functioning of ships in 
the shallow waters, are among the main sources of the Sea of Azov pollution. The 
water transport impact on the Sea of Azov ecosystem is quite significant: about 
7000 ships pass through navigational canals dug in shallow waters [5]. 

Satellite systems with high spatial resolution and daily data input for any ob-
serving area provide the monitoring of marine environment state and pollution. 
However, in the situation of the catastrophic black oil spill in the Kerch Strait oc-
curred on November 11, 2007 (an accident with Volgoneft-139 tanker) during 
a severe storm, the first satellite images were received only five days after the dis-
aster, on November 16, 2007 [6]. Cloudy weather caused the lack of optical range 
data. Incomplete operational information significantly complicates the identifica-
tion of polluted areas and the making of their distribution forecast. In this regard, 
a joint analysis of satellite optical images and numerical simulation results is the 
most effective as it provides more complete information on the transport directions, 
dimension and concentration of pollution areas. The results of simulation provide 
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the comparison of calculations with the operational situation identified by satellite 
imagery and lead to valid conclusions when making a forecast of pollution spread 
consequences. 

Paper [7] focuses on the numerical study of the Sea of Azov dynamic process 
impact on the pollution spread. In this paper the main characteristics of wind cur-
rents (direction, movement velocity, geometric parameters), direction and the max-
imum spread of pollutions are studied on the basis of 3D nonlinear sigma-
coordinate Princeton Ocean Model (POM) [8]. 

In the present work the numerical modeling results and the data of satellite ob-
servations of the Sea of Azov water condition over two-year period (2013–2014) 
are summarized. On the basis of the developed new model algorithms the numeri-
cal study of the Sea of Azov spatial-temporal pollution dynamics is carried out. 
The possibilities of sharing information obtained by methods of the sea surface 
remote sensing from the space and on the basis of model solutions are discussed. 
The analysis of modeling and observational data consistency, which allows one to 
identify negative changes in the marine environment condition, to predict their oc-
currence, typical zones and areas covered by anthropogenic impacts is carried out. 
 

The applied mathematical model and its parameters 
In the numerical studies a version of 3D nonlinear hydrodynamic model POM 

adapted to the Azov basin conditions [9] and also applied for studying the contam-
ination evolution under effect of the mentioned disturbances was used. The math-
ematical model is based on the equations of a viscous fluid turbulent motion in the 
hydrostatic approximation [10]. Parameterization of vertical viscosity and turbulent 
diffusion coefficients is carried out in accordance with semi-empirical differential 
Mellor-Yamada model with a second-order closure [11]. Horizontal viscosity coef-
ficient depending on the horizontal gradients of velocity is calculated using 
a subgrid viscosity model [12]. The projections of tangential frictional wind stress-
es on the free surface are expressed in terms of wind velocity at a standard meteor-
ological height corrected for the sea surface aerodynamic drag coefficient, obtained 
by formulas expressing empirical dependences on the wind velocity [13]. At the 
bottom the normal velocity component makes up zero. According to the logarith-
mic law, near-bottom tangential stresses are related to the velocity. Using the 
Grant-Madsen theory [14], the values of the roughness parameter characterizing 
the hydrodynamic properties of the underlying bottom surface are determined. On 
the lateral boundaries of the basin, which are assumed to be closed, the adhesion 
conditions are fulfilled. At the initial time moment fluid motion is absent and free 
surface is horizontal. 

On the basis of the stability criterion for the barotropic waves, the selection of 
integration steps by spatial and temporal coordinates is performed [15]. Vertically, 
the number of model grid levels is 11, the horizontal resolution is 1.4 × 1.4 km. 
The equations are integrated with 18 s steps to find averaged two-dimensional ve-
locity and level components and in 3 min steps – to calculate the deviations from 
the found average and vertical velocity components. The initial data for modeling 
are taken from the bathymetry map and the one of the Sea of Azov coastline con-
figuration made on the basis of the digitization of the recent Hydrographic maps 
with their subsequent interpolation to the computational grid. The calculation of 
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pollution concentration change is carried out as a result of transport and diffusion 
equation solution. The conditions of absence of admixture fluxes through the side 
walls, free surface and the basin bottom [8] are added to the dynamic boundary 
conditions. 

Information on the atmospheric pressure and wind fields used in the numerical 
experiments. Wind and atmospheric pressure fields obtained by the data of 
SKIRON regional model over 2013–2014 were used as an atmospheric forcing. 
SKIRON atmospheric model was created and developed in the University of Ath-
ens by the Atmospheric Modeling and Weather Forecasting Group [16]. It is based 
on mesoscale numerical atmospheric Eta-model initially developed at the Universi-
ty of Belgrade. The main model development was provided by National Centers 
for Environmental Prediction (NCEP). The results of forecast by SKIRON model 
applied in this work were obtained by Marine Hydrophysical Institute of RAS as 
a full participant of Mediterranean Forecasting System Toward Environmental 
Predictions (MFSTEP) project. This variant of model is a 72 h forecast of meteoro-
logical parameters for the Azov – Black Sea and Mediterranean basins. During the 
first 48 hours the data output is carried out every 2 h, then – every 6 h. The calcula-
tion of parameters is performed on the grid with 0.1° step in longitude and latitude. 
The model provides 16 different parameters including the data on near-water wind. 
SKIRON model data were interpolated on the computational grid of the Sea of 
Azov basin with the mentioned horizontal resolution. 
 

Satellite data preparation 
Reconstruction of the Sea of Azov initial hydrooptical initial characteristics by 

the color scanner data. Methodology of index34 and bbp(555) parameters calcula-
tion by the systematized MODIS data. Satellite data for 2013 and 2014 of the 
MODIS scanner second level from Aqua satellite [17] with the data rejection ac-
cording to certain criteria described in [18] are used in the work. The initial data of 
instruments were of kilometric spatial resolution. To determine the features in the 
upper layer of the sea, two parameters were calculated from satellite data. To de-
termine the features in the sea upper layer by the satellite data, two parameters 
were calculated. The first parameter, index34, is a relation of normalized water-leaving 
radiance LWN(λ) (getting from under the water surface) at λ wave length in two spectral 
channels: index34 = LWN(531)/LWN(488), where LWN(531) = RRS(531)FO(531), and 
LWN(488) = RRS(488)FO(488) (RRS(λ) – the remote-sensing reflectance with central 
wavelengths of spectral channels of 531 and 488 nm, respectively; FO(λ) are the solar 
constants). Physical essence of this parameter consists in the fact that it characteriz-
es total absorption of all optically active matters consisting in the seawater upper 
layer. FO solar constants for the considering spectral channels can be found, for in-
stance, in [18]. 

The second parameter bbp(555) is a coefficient of light backscattering by sus-
pended matter particles at 555 nm wavelength, which allows one to observe peculi-
arities of light scattering in the water upper layer. Basically, it can be a suspension 
of biological origin (for example, a bloom of coccolithophorides) and non-living 
suspended matter (for example, a mineral suspended matter related to river dis-
charges or its rising from the bottom due to a strong wind). According to [19], the 
calculation of bbp(555) was carried out by the formula 
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bbp(555) = [6.76LWN(555) + 0.03(LWN(555))3 + 3.4LWN(555)(I510)3.8 – 0.84]10–3, 
 

where I510 = LWN(555)/LWN(510). In the course of the study, the data from the Aqua 
satellite (with a MODIS scanner onboard) which are freely available on the Internet 
(http://oceancolor.gsfc.nasa.gov) were used. These data were interpolated on the grid 
of the mentioned numerical model with 1/59° × 1/84° horizontal resolution in latitude 
and longitude. Remote data temporal resolution is due to the passage of the satellite 
(which is daily recorded here at 9 a.m. – 2 p.m. local time) over the Sea of Azov re-
gion. The smallest time step between the satellite images is ~24 h. 

The most informative images (maximally free from the impact of cloudiness 
and the presence of omissions) were selected for the analysis from the available 
satellite data. They are systematized into groups consisting of successive images 
with the smallest temporal interval between the adjacent ones. The selected periods 
correspond to good weather conditions over the Sea of Azov water area when the 
cloudiness is absent. Thus, 6 temporal groups consisting of the most contrast satel-
lite images with a discreteness of 1 to 2 days, which were used in the test calcula-
tions to estimate the change in the distribution of index34 and bbp(555) parameters 
under study, are obtained. Three of these groups which are of the greatest interest 
for the analysis are the data with a daily discreteness, three other – with 2 days in-
terval between the images. 

For each satellite data temporal group the modeling of distribution of index34 
and bbp (555) parameters, which determine the field of suspended matter neutral 
buoyancy in the near-surface layer of the Sea of Azov, is carried out. Initial distri-
bution of these parameters is assimilated in the model by the data of satellite distri-
bution in the moment of time coinciding with the first image of group. The model-
ing was carried out at a real atmospheric forcing (SKIRON) corresponding to the 
satellite image group of the selected time period. Numerical experiments are car-
ried out by two scenarios: without subsequent satellite distribution assimilation of 
index34 and bbp(555) parameters and with the assimilation in those moments of 
time for which satellite data (every 24 or 48 h) are available. 
 

An algorithm for the observational data assimilation 
The successive recursive algorithm of data assimilation in the problem of es-

timating the passive admixture concentration fields is based on Kalman theory of 
optimal filtration [20–22]. When solving this problem, in tk moment of time xk

m 
vector of a priori estimate based on integrating the transport and diffusion equation 
is constructed. This vector is a short-term model forecast of the investigating pa-
rameter from the previous step of assimilation. Its dimension is equal to the number 
of points of the model space (n = nλnϕ, where nλ = 176 and nϕ = 276 – the number 
of the grid nodes in longitude and latitude). Satellite observation data comprise yk

0 

vector of observations. Its dimension (m) varies according to available observa-
tional data and does not equal to n in a general case. By the data of observations 
and the model optimal estimate of xk

* concentration is determined using an algo-
rithm of Kalman filter based on forecast – correction system. 

We assume that in tk–1 moment of time a forecast of investigated parameter 
concentration distribution in the sea surface layer xk–1

* is obtained and it is neces-
sary to assess it in the following tk moment of time. To do this, we construct a fore-
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cast of xk
f a priori estimate at tk time moment relying on xk–1

*assessment. Then we 
obtain y0

k measurements and, correcting the estimate in tk moment, we find the fi-
nal a posteriori assessment of xk

* state vector on the basis of the forecast and meas-
urements. 

The components of a priori estimate vector xf = (x1
f, x2

f
, …, xn

f) are determined 
by the found values of the analysis vector x* = (x1

*, x2
*

, …, xn
*): 

 

xk
f = A(xk-1

*) + ξk (k = 1, …, n),                                    (1) 
 

where A is an operator of the model; xk-1
* is a vector of analyzed values in tk-1 mo-

ment of time (the estimate obtained at (k − 1)th time step) ξk is a random vector of 
model errors; k is assimilation step. The data of satellite observations constitute the 
vector y0 = (y0

1, y0
2, …, y0

m):  
 

yk
0 = Bkȳ0

k + εk (k = 1,…, m),                                    (2) 
 

where Bk is a matrix of model space projections into the observation space of (m × n) 
dimension; ȳ0

k is m-dimensional vector of observations in tk moment of time; εk is 
a random m-dimensional vector of observational errors; The system noise (1) and 
the one of measurements (2) are Gaussian random processes with zero mathemati-
cal expectation. Optimal estimate of xk

* concentration is found, according to the 
data of the model and measurements, from the condition of the minimum trace of 
estimation errors covariance matrix on the basis of the Kalman filter algorithm 
[20–22]: 

 

xk
* = xk

f + Kk(yk
0 – Bkxk

f),                                           (3) 
 

Kk = Pk
fBk

T(BkPk-1
*Bk

T + Rk)–1,                                      (4) 
 

Pk
f = Ak-1Pk-1

*Ak-1
T + Qk-1.                                           (5) 

 

Here xk
f is a concentration forecast over the model; Kk is an unknown weight ma-

trix (Kalman gain) found by the methods of optimal interpolation; Pk
f is a of fore-

cast error covariance matrix; Rk and Qk-1 are covariance matrices of observational 
and model errors, respectively. 

The first step of the Kalman filter algorithm consists of the forecast with the 
computation of preliminary concentration estimate by the formula (1) and the com-
putation forecast error covariance matrix (5). Further, by the formula (4) Kk weight 
matrix is calculated. At the next step of the analysis a desired estimate is deter-
mined using the formula (3) based on the data (2) and the analysis error covariance 
matrix. If the observations are unavailable, we assume that the analysis error covar-
iance matrix is equal to the forecast error covariance one, and the analysis estimate 
coincides with the model forecast. 

In the present work a simplified model for the calculation of forecast error co-
variance matrices is used [21]. In the numerical experiments during the satellite 
data assimilation a root-mean-square error between the forecast and observational 
data is calculated. Then, in the sea region where the data are absent, the forecast 
data are assimilated from the previous time step taking into account the computed 
error. In that sea area where the satellite data is presented in the images, an interpo-
lation of corresponding time step observational data is performed. Qk matrix of 
model error covariance was set to be equal to zero. 
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The analysis of numerical experiment results 
Comparison of modeling data and satellite images of index34 and bbp(555) pa-

rameters distribution in the Sea of Azov. For each temporal group of satellite and 
modeling data a statistical analysis based on the determination of spatial correlation 
of index34 and bbp(555) parameters values is carried out. The sets of values of the 
mentioned parameters are heterogeneous. Satellite data are heterogeneously dis-
tributed in space and time. The modeling data obtained on the basis of the transport 
and diffusion equation integration have a constant discreteness (3 min interval). 

The analysis of remote measurement time series. For the analysis of the re-
sults, 6 groups of the most informative images obtained in the following periods 
were selected:  

1. April 26 – May 2, 2013 (24–48 h interval between the images). 
2. March 21–26, 2014 (24 h interval between the images). 
3. August 6–10, 2014 (24 h interval between the images). 
4. June 23–29, 2013 (48 h interval between the images). 
5. July 17–23, 2014 (48 h interval between the images). 
6. November 3–7, 2014 (48 h interval between the images). 
All the satellite data were pre-processed in such a way that if there is a pair of 

images with 30 min interval from of the same current date, they were concatenated 
into one image including both of the mentioned ones. For example, the initial im-
age of the 4th group was obtained from two consecutive images at 9:35 a. m and 
11:50 a. m. on June 23, 2013 (Fig. 1). 

 

 
 

Fig. 1. An example of combining the satellite images into one picture. The data of bbp(555) parameter 
distribution in the Sea of Azov near-surface layer on June 23, 2013: a – at 9:35 a. m; b – at 
11:50 a. m; c – the processed data 

 
Let us compare the original time series in the satellite data groups in order to 

obtain distribution estimates of the parameters relative to the selected initial pa-
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rameter. For each period a correlation coefficient (r) of index34 and bbp(555) pa-
rameters between the observational data and modeling results in the nodes where 
there is a data of two considering series was determined. The values of this coeffi-
cient, varying within the range from one to zero, determine the data consistency 
degree. The largest (rmax) and the smallest (rmin) values of cross-correlation coeffi-
cients and time interval, corresponding to the strongest and the weakest correlation 
in relation to the selected initial parameter in each group, are given in the table. 

The analysis of time series reveals that weak correlative dependence primarily 
occurs in those cases where a large difference in n and m dimensions (at a low-
dimensional subspace of observational data) takes place. 

 
Correlation coefficient estimates in the groups of time series 

satellite data 
 

Group 
number 

Parameter rmax Time interval, 
h 

rmin Time interval, 
h 

1 
index34 0.83 120 0.63 25 
bbp(555) 0.89 240 0.81 288 

2 
index34 0.91 72 0.21 96 
bbp(555) 0.94 48 0.50 96 

3 
index34 0.77 72 0.48 24 
bbp(555) 0.83 48 0.64 72 

4 
index34 0.86 96 0.14 120 
bbp(555) 0.80 24 0.50 48 

5 
index34 0.61 24 0.19 264 
bbp(555) 0.86 24 0.44 360 

6 
index34 0.84 48 0.32 96 
bbp(555) 0.83 48 0.69 96 

 
The analysis of modeling results and satellite data of admixture evolution in 

the Sea of Azov depending on the intervals between the satellite data assimilation. 
During the investigation the modeling of index34 and bbp(555) parameters propaga-
tion with the Sea of Azov surface satellite images involvement was carried out. The 
calculations were performed for the same 6 time groups. As an initial distribution 
of the studied parameter, its value obtained from the satellite is set in the model. 
A moment of time in which the assimilation of this initial distribution takes place, 
corresponds to the date and local time of the existing satellite image. 

In Fig. 2 the model and satellite distributions of index34 parameter relating to 
the first group of images (April 26 – May 2, 2013) are shown. In the left column 
the satellite images are given, in the right one – the images corresponding to each 
satellite image of index34 parameter distribution as well as the velocities of surface 
currents (Fig. 2, c, f, i) according to hydrodynamic model for a close time moment 
(the difference does not exceed 2 h). Here white areas correspond either to cloudi-
ness or to gradient zones which were cut during the data processing. For the model 
distributions the date and local time are given, in the satellite data a name of the 
MODIS scanner initial file is represented. Color scales in which the satellite and 
model data are given correspond to each other. 
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Wind velocity analysis revealed the fact that approximately two days before 
the considering time moment (from 24.04.2013, 00:00 a. m.) a northeastern wind 
with up to 10–12 m/s velocity developed. This wind is the most favorable one for 
the admixture transport from the Taganrog Bay. The described hydrodynamic sce-
nario confirms model distributions of current surface velocity: northeaster wind is 
accompanied by the currents of the same direction (Fig. 2, c). As can be seen in 
Fig. 2, d, rather large area in the satellite image is covered with the cloudiness in 
a day. Modeling data (Fig. 2, e) allow one to assess the character of index34 propa-
gation in this area. This figure demonstrates the validity of model forecast at the 
absence of satellite data. Wind direction changed to the western one, a strip of cur-
rents appeared in the central part of the sea. It captured admixture from the shore 
and transferring it to the center of the basin, to the north and northeast (Fig. 2, f).  

At the distributions relating to the time moment of May 2, 2013, 10:00 a.m. 
(Fig. 2, j) in the region adjacent to the Taganrog Bay and near Berdyansk coast an 
area of the highest concentration of the considered parameter still takes place. As is 
obvious (Fig. 2, h), after 6 days from the beginning of assimilation the correspond-
ing model distribution poorly reflects the real one. 

The second series of experiments was carried out to assess the possibilities of 
assimilation algorithm and to determine its effectiveness with a decrease in the in-
terval between the data assimilation. The results of modeling (carried out using 
a sequential data assimilation procedure) are compared with the ones obtained at 
a single (initial) assimilation. Assimilation experiments in the selected groups are 
performed using this algorithm at time moments when informative satellite images 
exist. Assimilation of index34 and bbp(555) parameters observational data was per-
formed applying the Kalman filtering algorithm in which the computation of fore-
cast error covariance matrices was carried out by the formula (5). In this experi-
ment root-mean-square error of concentration estimate was also determined. It was 
compared with the same error but obtained during the assimilation of data at the 
initial time. Thus, the parameter distribution forecast (for example, for 6 days, 
group 1) was performed in the model by the initial filed (x0

m = y0
0) without carry-

ing out the analysis steps.  Root-mean-square error of the forecast was estimated at 
that. The graphs of the obtained estimations are given in Fig. 3. 

 

 
 

Fig. 3. Correlative curves by satellite and model distributions of index34 parameter 
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The performed analysis of the correlation value between the data of observa-
tions and modeling carried out for these two experiments reveals the fact that the 
assessment of index34 and bbp(555) parameters concentration field with the further 
assimilation leads to significant decrease of root-mean-square error and to the in-
crease of correlation coefficient. It is shown that the successive scheme of observa-
tional data assimilation improves the pollution forecast performed according to the 
model even with unstable satellite images. 
 

Conclusion 
A simplified algorithm of data assimilation of admixture concentration observa-

tions based on the Kalman filter theory is proposed in the paper. The system of satellite 
data assimilation consisting of a set of applied programs for determining the passive 
admixture parameters in the sea surface layer is represented. New algorithms are used 
in conjunction with the passive admixture transport and diffusion model. The modeling 
of passive admixture distribution process in the sea is performed on the basis of a set of 
programs that implement the described algorithm for assimilating observational data. 
Numerical experiments on assessing the distribution of index34 and bbp(555) parame-
ters showed the effectiveness of the algorithms proposed in the work. 

The presented numerical algorithms and new program complexes are of practical 
significance. They can be used to assimilate satellite observations, improve the accura-
cy of concentration field determination and have an important property of economy. 
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