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Asymptotic expansions up to the third-order terms are constructed based on the multiple scales
method for the fluid velocity potential of the finite-depth homogeneous fluid and elevation of the
plate-fluid surface (ice-water surface). The obtained expansions constitute a foundation for analyzing
dispersive properties of the fluctuations formed under interaction of progressive harmonics of the
finite-amplitude surface waves. Changes of the fluctuation frequency taking place due to the
contribution of the values of the first and second approximations conditioned by the taken into
account non-linearity are considered. The effect of non-linearity of the ice plate vertical displacement
acceleration on the amplitude, frequency and phase velocity of the wave disturbances is studied. It is
shown that at the wave numbers exceeding the maximum resonance value, the oscillation frequency
increases in case non-linearity of the plate vertical displacement acceleration is taken into account. It
also grows with the plate thickness, and change of a sign (plus into minus) of the second interacting
harmonic amplitude reduces the frequency value if the wave number is fixed. The phase velocity
increase with allowance for the acceleration nonlinearity is more significant than without considering
it. Under a negative amplitude of the second interacting harmonic, if the acceleration nonlinearity is
taken into account, the phase velocity is less than when it is not.
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Introduction. In a linear formulation, the study of the fluid fluctuations with
a floating elastic plate was carried out in [1-8]. Analysis of the influence of the
mass and elastic forces of the plate on the characteristics of forced unsteady
flexural-gravitational waves of small amplitude is performed in [9]. In [10] the
nonlinear fluctuations of an absolutely flexible plate (broken ice) floating on the
surface of homogeneous ideal fluid of finite depth are studied. Vibrations of finite
amplitude in homogeneous fluid with a floating elastic plate without taking into
account the nonlinearity of the acceleration of its vertical displacements are
considered in [11-13]. An estimate of the influence of the nonlinearity of the
vertical displacement acceleration of a plate due to its deformation on the
propagation of periodic surface waves is given in [14]. Formation of nonlinear
oscillations of an absolutely flexible floating plate with a nonlinear interaction of
traveling periodic wave harmonics is analyzed in [15].
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The fluctuations formed in the system of an ice plate — liquid under the
interaction of harmonics of traveling periodic surface waves of finite amplitude are
studied in the present paper.

1. Problem statement. Suppose a thin elastic plate of constant thickness h is
floating on the surface of the homogeneous ideal incompressible fluid of constant
depth H. In the horizontal directions, the plate and liquid are unlimited. Let us
consider the nonlinear fluctuations of a plate in the interaction of the first and second
harmonics of progressive waves of finite amplitude, assuming that the fluid
movement is potential, and the plate fluctuations are uninterrupted. In dimensionless

variables x=kx,, z=kz,, t=1fkgt;, {=k(", and (p:(kz/\/@)(p*, where k is
the wave number; g is the gravity acceleration; t is the time; ¢(x, z, t) is the fluid
movement velocity potential; {(x, t) is the plate or the plate—fluid surface elevation,
the problem involves the Laplace equation solution
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for the velocity potential with boundary conditions on the plate-liquid surface
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E, h, p1 and v are the normal elasticity module, thickness, density and Poisson's

ratio of the plate; p is the fluid density. The velocity potential and deflection of the

plate at z = { are bounded by the following kinematic condition

% L d0 o w9
ot oxox oz
In the dynamic condition (1.2), the expression with the factor «x represents the
inertia of the vertical displacements of the plate. The first term in the brackets of
this expression characterizes the nonlinearity of the vertical acceleration of the
plate.
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2. Equations for nonlinear approximations. The problem solution (1.1)-
(1.5) is obtained by the method of multiple scales [16]. Two new variables

T, =st, T, = ¢t are introduced. They are slowly varying in comparison with t = 7,
where ¢ is small but finite, and the validity of the expansions is assumed

C=elo, @=2¢y, f=efy, o= +el,+ 82@3 +0(e%), (2.1)
Oy = @y +£¢, +e°0, +O(e), f,=f, +ef, +e°f, +O(e%).
Substituting ¢ from the expressions (2.1) into (1.1) and (1.3), within the accuracy
up to the the third-order values, the following expression is obtained

2 2
8A(p1+82A(P2+83A(p3:0, 8%4_826&.’_83%:0, A:a_+a_

oz oz oz x? or?
Below the dynamic (1.2), kinematic (1.5), and initial (1.4) conditions are
considered. The surface velocity potential of a plate — liquid z =«€(, is represented

in the following form

o(x,8(,,t) = (x,0,t) + £, (X,0,t) +%82§§(pzz(x,0,t) ... (22

C=¢C,, T =¢fy, 0(X, €€y, t) and o, (x, €€y, t) are substituted in the corresponding
conditions (1.2) and (1.5), bearing in mind that, according to the complex function
differentiation rule, the partial derivative with respect to time is defined by the
following expression

0 0 0 , O

—=—te—+8"—,

ot o1, oT, T,
taking into account the dependence of {o on x and t in the expression (2.2). Then,
collecting the coefficients at equal powers of ¢ and equating them to zero, the
following equations are found

2 2
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0
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for the determination of nonlinear approximations.

Here
Fn*:Fn+FnO! F1=F10:L1:Gl:0’ n=1’2’3;
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Note that F.’and F3° terms appearing on the right-hand sides of the dynamic
conditions (2.4) for the second (n = 2) and third (n = 3) approximations are due to
the nonlinearity of the vertical displacements of the plate.

3. Expressions for the plate deflection and the fluid movement velocity
potential. The equations (2.3)—(2.7) are obtained for the general case of unsteady
fluctuations of finite amplitude. Solution of these equations in the case of

interaction of traveling periodic wave harmonics C;; =cos6 and(;, =a, c0s260,
0=x+1T,+P(T,;,T,) is to be obtained. The first approximation (n = 1) of the
surface elevation of the plate-liquid is defined in the form as
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G =Cu+Cn (3.1)

where a; is the constant of the order of unity, and B = 0 under t = 0. Satisfying the
condition at the bottom and taking into account the relationship of the wave
characteristics through the boundary conditions (2.4), (2.5), the following can be
written

ch2(z+H)

Q= r[Msin(ﬂal

sin 20 |, 3.2
shH } (3:2)

2 = 1+ Dk A+ k thH ) *thH .

Amplitude a; and phase shift B (71, 7») are determined from subsequent
approximations.

Substituting {1 and ¢ in the right sides of the dynamic (2.4) and kinematic
(2.5) equations for the second approximation and solving the problem (2.3)—(2.7)
for n = 2, taking into account the requirement of absence of the first and second
harmonics in the particular solution, {; and ¢ are obtained. In turn, {; and ¢1 and
C» and @2 determine the right sides of the dynamic and kinematic conditions when
n= 3. Eliminating the terms generating secularity from them, sz and o3 are
obtained.

As a result, the basin surface elevation ¢ and fluid movement velocity potential
¢ in dimensionless variables up to the third-order quantities are determined from
following expressions

3 3 4 6
{=£c0s0+ » &"a,c0os20+ » &"» a,;cos j0+e> ) ag,cosnb, (3.3)
n=1 n=5

n=2  j=3

3
0= aﬁch(z +H)sin®+ > &"b,,ch2(z+ H )sin 20 +

n=1

3 4 6 3
+> "> b chj(z+H)sin jo +S3Z;b3nchn(z +H)sinne + Zzls“bnot . (34)

n=2 j=3
0=x+ot,0=1+¢0, +£°c,,¢ = ak,

where a is the amplitude of the initial harmonic.
Here

%
b, =8, — Haly j . (35)

——, =1
shaH ' (4r2(2120th2H + 417k + 1, ) (L+ 2xkth2H)
1 511
n =(2c:thH +th2H[cthH(EcthH +3Kkj—5j](’t (cthH + k) + ul),
of 1 5 1
rn=r1 §+cth2HcthH —xk| cth2H —EcthH +1, EcthH +cth2H |,
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Tu,| 2cthH +th2H| cthH 1CthH + 3k -2
2 2 2
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|, = alrz[l—zl—cchHcthH + Kk[SCchH —%cthH D ,

l, =a27?(5—cth?2H + 4xkcth2H ),

lug +3lt
bas = _ 2 a2 '
3sh3H (5 — 9kt —3t°cth3H)
lu, +4lt
by, allg +4lg

" 3sh4H (u, —16kkt? — 4<2cthdH)
8,5 = u3'(I; +3tby,(ch3H — kk3sh3H)),

a,, = 1, (I + 4th,, (ch4H — kk4sh4H)),
js = 2, —§afr —6b,,ch4H —§a24rcthH +38,,0,
8 8 2
is = —%alr—6b23ch3H —2a,;tcthH +4a,,0,,
js = —%afr —10b,,ch4H —gamrcthH - 5a1@b23ch3H - a231:cth2Hj :
jo = —5a’t —6a,(2b,,ch4H —a,,tcth2H ),
m, = {%alcl +2b,,ch4H (2th4H — cthH )) +%rz[%cthH (1—23a2 )+ 7aZcth2H —
—3a24) +30,,6,ch3H + Kk (t(2b,,sh4H (L1cth4H — 4cthH )+ 3a,5, +

+(20th2H +%cthHJ+rz(af[%—20th22H —%cthH cchHJ—%—gamcthH -

—%ctth )+9b23clsh3H j
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m, = r(4cslaf +%b23ch3H (5th3H —cthH )j + Zrz(aicchH —%alcthH + azsj +
+4b,,c,ch4H + Kk(r(%bm sh3H (11cth3H — 3cthH )+ 8a’c;cth2H j +
+ 12(%(3747 — 4cth2H cthH — %ctth j + 2a230thHJ +16b,,0,5h4H j
mg = r(2b24ch4H (6th4H —cthH +3bz3alch3H(; th3H —cth2H D
+1 (; a’cth2H —gal CthH +5a,,8, +— a24j+ [ (2b,,sh4H (19cth4H — 4cthH )+
+3b23alsh3H(Ecth3H 3cth2HD [ (g—mth ——cth2Hctth

+10a,,a,cth2H +ga24cthH D

M, = 4th,,a,ch4H (4th4H —cth2H )+ t%a, (a%cth2H +6ay, )+
+ 2xka, (4th,,sh4H (5cthdH — 2cth2H )+ 12 (6a,,cth2H — a2(1-+ 4cth?2H )))

3 3 15 1
q = ul(abmalchSH -~ r[g—jaf +a,,3,cth2H D + Tzal(_zcl +
1 3.2 1 5
+3b,,ch3H EthBH +cth2H | [+71°| 9a,cth2H +a,a,, +thhH E_al +
+ Kk[’czal(3b23$h3H (%cthSH +3cth2H j —20,cth2H + %clcthH J +
1 3 39
+1°| 2a,a,cth2H + 21 2cth®H += 3 +a/| 8cth?2H + cthHcth2H +T

0 = 1, (30,5ch3H + 4by,a,chaH + t(ay,cthH +2a,,a,cth2H —3a2 )+
+ ZTZGbﬁcth (cthH —th3H )+ 4b,,a,cth2Hch4H — clj+
+ 213(a23 + a1(3a1cthH +2a,, +cth2H (Saf -~ 2)))+

+ Kk(zrz(gbzsshw (3cthH —5cth3H )+ 8h,,a,sh4H (2cth2H —cth4H ) - o,cthH j +

+ 2r3(2af(3+ 4¢th2H )+ al(4cth2H (ay, +cthH )+%cth2H —%} +ayCcthH B
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02 ZE(&_F y J D3y = Jn}llnz—i_zmnnT 2 ,n=3.6,
4\, 2, nshnH (p, —n“t“xk —nt°cthnH)

ay, = (ntb,, (chnH +3kkshnH )+m, Ju;, n=3...6, p, =1+n*Dk*, n=1..6,
2 2 2 1 2 1 2
by = | a2(L+cth 2H)+Z(1+cth H )+ ik SethH + dafcth2H ||

by, = alrz(thhZH +%cthH . Kk(%+ 2cth2HcthH —%ctth D .

Wherein by, =b,, =a, =a;=l, =, =ly=lg=j,=j,=m =m, =0.
Formulas (3.3) — (3.4) for { and ¢ determine the wave disturbance being
formed, and in case the nonlinearity of the vertical displacement acceleration of ice

in the dynamic condition (2.4) is not taken into account. However, in this case it
should be taken into account that

r,= 12(%+cth2H cthH —Kk(ZCchH +%cthHD+p{%cthH +cth2HJ,
(11 3
I, =art ?—cchHcthH + k| 6¢th2H —EcthH ,

m, = r[2b24ch4H(2th4H —cthH )+%alclj+%tz(af(7cth2H —%cthH)+%cthH -

—3a,, )+ 30,,0,ch3H + Kk{%p{%cthH + 2cth2H }FET(% a’ + % —a,,cthH j+

+24b,,ch4H +9b,,6,sh3H ),

m, = r@bzscth (5th3H —cthH )+ 4clafj + ZTZ(al[cchH —%cthH ) + azs} +

+4b,,6,ch4H + kke(2(0b,,ch3H + 4a%G,cth2H )+ o(5a, + 2ay,cthH )+
+16b,,0,sh4H ),

ms = r(2b24ch4H (6th4H —cthH )+ 3b23alch3H(%th3H —Cth2HD+

of T2 1 1 9
+1 Eal cth2H —thhH +5 azsalJrEa24 + 5Kkt 8b24ch4H+§b23alch3H+
+ 1{% a’+ 2a,a,cth2H + %amcthH D

M, = 4b,,ta,ch4H (4th4H —cth2H )+ 1%, (acth2H + 6a,, )+
+ KkalT(48b24Ch4H + r(6a12 +12a,,cth2H ))
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q, = Ml(—gr - al(%alr +aytcth2H +gb23ch3H D+ a112(3b23Ch3H (%thBH +
1 3 1 5 2 2
+cth2H)—Eclj+r [thhH(E—al ]+9a1cth2H +a1a23J—

— qu;Z(al{%bzschBH + cl(ZCth2H —%cthH D + r(%af —2a,,3,Cth2H + é}j

q, = u2(3b23ch3H —3a’t+4b,,a,ch4H + a,,tcthH + 2a,,ta,cth2H )+
+1%(8by,a,cth2Hch4H —3b,,ch3H (th3H —cthH ) - 20, )+ 13(2a12 (5a,cth2H +
+3cthH )+ 4a, (ay, — cth2H )+ a,; ) — 2ke?(9b,,ch3H +16a,b,,ch4H + o cthH +
+ r(2a13 +4a,(1- a,,cth2H ) — a,,cthH ))

by, = alrz(thhZH +%cthH J
In dimension variables ({*, ¢, x1, z1, 1, @) the following is obtained

¢ = acos6+ aa, cos 20 + (azka23 + a3k2a33)00539 + (azka24 + a3k2a34)cos 40 + (3.6)
+a°k?a,; c0s50 + a’k “a,, C0s 66,

2
0= a(%j (ShLHch(z +H)sin®+b,ch2(z + H )sin 26) +a%Jkg (bych3(z+ H)+
+b,,ch4(z + H )sin 40 + byt )+ a’ky/kg (by5ch3(z + H )sin 30 + by,ch4(z + H )sin 40 +

+10,5h5(z + H )sin 50 + b,,ch6(z + H )+ byt),

0= kx+\/@(r+akcl +a2k2c52)t.
Here and below, the index 1 for Latin symbols X, z, t and the asterisk sign for
Greek C u ¢ are omitted.

4. Analysis of the results. The obtained solution (3.6) is valid outward small
neighborhoods of the resonance values of the wave number k, which are positive
real roots k = ki, k = ko, k = ks, k = ks of the equations

i, —n%t’xk —nt’cthnH =0, n =3...6 (4.1)

respectively. Wherein ki > ko > ks > ka. Note that one of these resonance values k =
= ki, obtained from the equation (4.1) when n = 3, coincides with the smaller of the
two resonance values obtained in the case when the first approximation ¢, is given
in the form & = (i1 [14].

For quantitative estimate of the influence of the elastic and mass forces of the
plate on the characteristics of the fluctuations formed, numerical calculations were
carried out under the values of the modulus of elasticity E = 0.5-10° — 3-10° N/m?,
Poisson's ratio v = 0.34 and density pi/p = 0.87, corresponding to the ice plate [17].
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Fig. 1 and 2 show the ice-water surface elevation profiles (ice plate bending) along
the direction of the wave propagation (negative direction of the x-axis) for E = 3-10°
N/m? and the valuesh=1m, =100 mwhent =17 min,k=0.21 m?, e =ak = 0.21
(Fig. 1) and t =10 h, k =7-10° m?, ¢ = 1.4-10° (Fig. 2). The profiles (x) in Fig. 1, a
and 2, a correspond to a positive value of the amplitude of the second interacting
harmonic (a1 > 0); in Fig. 1, b and 2b — to the negative one (a1 < 0). Dashed lines are
the profiles obtained taking into account the nonlinearity of the vertical displacement
acceleration of the ice plate (F-° = 0, F3° # 0), and solid ones — without taking into
account (F2° =0, F® = 0).
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0 20 40 60 80 0 400 00 1200 1600 2000

Fig. 1. The wave profiles of the flexural
deformation of the ice plate with the amplitude
of the initial harmonic a = 1 m and wave number
k=0.21 m?, in case a1 >0 (a) and a1 < 0 (b)

Fig. 2. The wave profiles of the flexural
deformation of the ice plate with the amplitude
of the initial harmonic a = 2 m and wave number
7-10° m'%, in case a1 > 0 (@) and a1 < 0 (b)

From the analysis of {(x) graphs, it follows that under the interaction of wave
harmonics, the nonlinearity of vertical displacement acceleration of the ice plate
during its flexural deformation hastens the wave profile displacement in the negative
direction of the x axis (the direction of wave motion) and slightly changes the
amplitude of the flexural wave, depending on the wave number and the
characteristics of the plate. When a; > 0 the maximum displacements of the basin
surface are reached at the tops of the wave elevations, and the minimum ones — in the
soles of the troughs. Variation of the sign of the amplitude a1 of the second
interacting harmonic causes a substantial deformation of the flexural profile. In the
case of a1 < 0, the maximum profile displacements appear in the form of troughs. In
this case, taking into account the nonlinearity of vertical displacement acceleration of
the plate during the flexion causes the slowing down of the wave propagation velocity.
As the wavelength of the fundamental harmonic increases, the contribution of the
higher harmonics in the troughs and elevations on the profiles of (x) becomes more
notable, and with its decrease — the wave profile approaches the harmonic form.
Distribution of the fluctuation frequency in the linear case and due to the
frequency displacement nonlinearity in the approximation of the order of smallness
of ¢ and in the approximation of order €2 is shown in Fig. 3, 4 and 5, respectively,
12 PHYSICAL OCEANOGRAPHY VOL. 25, ISS. 1 (2018)



when H = 100 m. In Fig. 3 the curves 1, 3 and 4 are obtained when h = 0.5 m, and
the curves 2, 5 and 6 —when h =1 m. The lines 3, 5 correspond to the modulus of
elasticity E = 10° N/m?, and the lines 4, 6 — to the value E = 3-10° N/m?. Curves 1,

2 correspond to the case of an absolutely

flexible plate (E = 0) simulating broken

ice. The graphs above show an increase in the linear component of the fluctuation
frequency with increasing of the ice thickness and its modulus of elasticity, which
agrees with [9, 17]. The shorter the wavelength (larger value of the wave number),
the more pronounced the influence of h and E is. In the long wavelength range, it is

practically absent.

16 = kg, ¢!

0 0,1

Fig. 3. Distribution of the fluctuation frequency
with respect to the wave number in the linear
case with an ice thickness 0.5 m (the curves 1, 3,
4) and 1 m (the curves 2, 5, 6) in the case of the
elastic modulus E = 10° N/m? (the curves 3, 5),
E = 3-10° N/m? (the curves 4, 6), E = 0 (the
curves 1, 2)

0,5 5

kow! !

0.4

03

0,1

k!
0 T T T T T T T T 1

0 0,02 0,04 0,06 0.08 0.1

Fig. 4. Distribution of the vibration frequency
component due to the nonlinearity in the first
approximation, without taking into account the
factor € = ak in case a1 > 0 when h = 0,5 m (the
curves 1, 2) and h =1 m (the curves 3, 4), if E =
=10° N/m? (the curves 1, 3) and E = 3-10° N/m?
(the curves 2, 4)

o, Vkg, ¢

0,006 0008 001 0012 0014 0016 0018 002

T 11111717111 1711 -

0,08

Fig. 5. Distribution of the fluctuation frequency displacement component of the second order according
to the wave number within the accuracy of a factor when a1 > 0, in case k < ks (@) and k > ki1 (b)
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Distribution of the nonlinearity dependent component of the fluctuation
frequency with respect to the wave number in the approximation of order g,
without taking into account the factor € = ak, is shown in Fig. 4 for a1 > 0, where
the curves 1, 2 correspond to h = 0.5 m, and the curves 3, 4 —to the value h =1 m.
Curves 1, 3 were obtained when E = 10° N/m?, and curves 2, 4 — when E =
=3-10° N/m?. The dashed lines are constructed when the nonlinearity of vertical
displacement acceleration of the plate is taken into account, and the solid lines —
when it is not. From the figure, it can be seen that the acceleration nonlinearity
effect (F2° = 0, Fs° = 0) is manifested in an increase in the frequency displacement
component in the approximation of order . Moreover, the contribution of
accounting for the acceleration nonlinearity increases with increasing the wave
number (wavelength decrease). In case when a; < 0, the given component value is
preserved, but the sign changes to the opposite one. It can be seen from the
expression o1, wWhere a1 is present in the denominator. Consequently, a change of a:
sign leads to a change in o1 sign.

Dispersion curves connecting the displacement component of the second-order
frequency with the wave number are shown within the accuracy of a factor of 2 =
= a%k? in Fig. 5 for fixed ¢ in the case a; > 0. At that, in Fig. 5, a they are given for
the wave number values from the range k < ks, and in Fig. 5, b — for k from the range
k > ki. All the indications in Fig. 5 are the same as in Fig. 4. Behavior of the graphs
indicates that in the range k < ksthere is a wave number value, passing through which
the sign of the component of the order €2 changes from plus to minus.

In the range k > ki this component is negative under the considered values of k.
Taking into account the nonlinearity of vertical displacement acceleration of the
plate reduces the component modulus value under a fixed value of k. The plate
elasticity increase leads to an increase in the absolute value of the displacement
frequency. A similar effect is observed with increasing thickness of the ice plate.
The distribution character of the second-order displacement frequency with respect to
the wave number under a fixed ¢ for a; < 0 is qualitatively the same as under a; > 0

(Fig. 5).
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Fig. 6. Distribution of the fluctuations frequency
formed in the case of nonlinear interaction of wave
harmonics, by wavenumber when a1 > 0 (the lines
1, 3) and a1 < 0 (the lines 2, 4), in case h =1 m (the
linesu 1, 2) and h = 0,5 m (the lines 3, 4)

Fig. 7. The influence of taking into account the
nonlinearity of vertical displacement acceleration
of the plate on the phase velocity of the
generated flexural-gravitational wave
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Distribution of the fluctuations frequency (cz\/@(r+akcl+a2kzcz))

formed in the nonlinear interaction of wave harmonics is shown in Fig. 6. Here, the
lines 1, 3 are given for a; > 0, and the lines 2, 4 — for a; < 0. The lines 1, 2
correspond to a plate thickness of 1 m and the lines 3, 4 — to the thickness of 0.5 m.
The dashed curves show distribution frequency of the fluctuations with allowance
for the nonlinearity of vertical displacement acceleration of the plate during its
flexural deformation, and the solid ones without taking it into account. As
expected, taking into consideration the acceleration nonlinearity leads to the
fluctuation frequency increase. o also grows with increasing of the elastic plate
thickness. The change in the sign of the amplitude a: from plus to minus decreases
the fluctuation frequency value under a fixed wave number.

Influence of the consideration of the nonlinearity of vertical displacement
acceleration of the plate during its flexion to the phase velocity of the formed finite
amplitude flexural-gravitational wave is demonstrated by the graphs v(k) shown in
Fig. 7 for k > ki. They are obtained when a; >0, H =100 m, h=1m, E =
=3-10° N/m?, both taking into account (dashed line) and without taking into
account (thin solid line) the vertical acceleration nonlinearity. A thick solid line
represents the phase velocity in the linear approximation. Analysis of the results of
numerical calculations in the range of considered wave numbers shows that taking
into account nonlinearity causes an increase in the displacement velocity of the
flexural wave. At the same time, the increase in velocity with allowance for the
nonlinearity of vertical displacements is greater than without taking it into account.
Note that the value of the phase velocity increases with increasing of plate
thickness or modulus of elasticity [9, 17].

If a1 < 0, values of v(k) if the acceleration nonlinearity is taken into account are
less than without taking it into account. In this case, v(k), both with and without
allowance for acceleration nonlinearity, assumes smaller values than in the linear
approximation.

In the range of wave numbers k < ks (long waves), the influence of plate
characteristics on the distribution of v over k is not practically manifested [9, 17].
The dependences of v v(k) with and without allowance for the terms F.° and F3° in
the expression (2.4) coincide between each other both for a; > 0 and a; < 0. In the
case a1 > 0, the graph of v(k) passes above the corresponding approximation, and in
the case of a; < 0 it is lower, although insignificantly.

Conclusion. Asymptotic expansions up to the third-order terms are
constructed based on the multiple scales method for the fluid velocity potential of
the finite-depth homogeneous fluid and elevation of the plate-fluid surface (ice-
water surface). The estimation of the contribution of the values of the shift
frequency of fluctuations due to nonlinearity in the first- and second-order
smallness approximation is given. Dependence of these values on the sign of the
second interacting harmonic amplitude and on the account of the nonlinearity of
vertical acceleration of the ice plate is shown. Sign change of the second harmonic
amplitude leads to a change in the sign of the frequency displacement component
in the first approximation. The influence of the nonlinearity of vertical
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displacements acceleration of the plate is manifested in the increase of this
frequency displacement component.

Taking into account the nonlinearity of vertical displacement acceleration of
the plate reduces the value of the modulus of the second-order smallness
displacement component. Increase of the plate elasticity (or thickness) leads to an
increase in the absolute value of this component.

Fluctuation frequency, taking into account the displacement components
nonlinearity under the wave numbers larger than the maximum critical value,
increases with allowance for the nonlinearity in the wvertical displacement
acceleration of the plate. The frequency also grows with the plate thickness
increase. The second harmonic amplitude sign change from plus to minus
decreases the frequency value under a fixed wave number. In this range of the
wave numbers, the nonlinearity causes an increase in the velocity of flexural wave
displacement under a positive second harmonic amplitude. The growth of velocity
with allowance for the nonlinearity of vertical displacement acceleration is greater
than without taking it into account. If the second harmonic amplitude is negative,
and the acceleration nonlinearity is taken into account, the phase velocity is less
than without it is not.

In the long-wave range under the wave numbers less than the minimum critical
value, the influence of plate characteristics on the phase velocity distribution by the
wave number is not practically manifested. The phase velocity distributions along
the wavelength with and without allowance for the acceleration nonlinearity
coincide with each other both for positive and for negative values of the second
harmonic amplitude. Moreover, for a positive value of the amplitude, the phase
velocity is greater, and for a negative value, it is less than in the linear
approximation.
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