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Asymptotic expansions up to the third-order terms are constructed based on the multiple scales 
method for the fluid velocity potential of the finite-depth homogeneous fluid and elevation of the 
plate-fluid surface (ice-water surface). The obtained expansions constitute a foundation for analyzing 
dispersive properties of the fluctuations formed under interaction of progressive harmonics of the 
finite-amplitude surface waves. Changes of the fluctuation frequency taking place due to the 
contribution of the values of the first and second approximations conditioned by the taken into 
account non-linearity are considered. The effect of non-linearity of the ice plate vertical displacement 
acceleration on the amplitude, frequency and phase velocity of the wave disturbances is studied. It is 
shown that at the wave numbers exceeding the maximum resonance value, the oscillation frequency 
increases in case non-linearity of the plate vertical displacement acceleration is taken into account. It 
also grows with the plate thickness, and change of a sign (plus into minus) of the second interacting 
harmonic amplitude reduces the frequency value if the wave number is fixed. The phase velocity 
increase with allowance for the acceleration nonlinearity is more significant than without considering 
it. Under a negative amplitude of the second interacting harmonic, if the acceleration nonlinearity is 
taken into account, the phase velocity is less than when it is not. 
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Introduction. In a linear formulation, the study of the fluid fluctuations with 
a floating elastic plate was carried out in [1–8]. Analysis of the influence of the 
mass and elastic forces of the plate on the characteristics of forced unsteady 
flexural-gravitational waves of small amplitude is performed in [9]. In [10] the 
nonlinear fluctuations of an absolutely flexible plate (broken ice) floating on the 
surface of homogeneous ideal fluid of finite depth are studied. Vibrations of finite 
amplitude in homogeneous fluid with a floating elastic plate without taking into 
account the nonlinearity of the acceleration of its vertical displacements are 
considered in [11–13]. An estimate of the influence of the nonlinearity of the 
vertical displacement acceleration of a plate due to its deformation on the 
propagation of periodic surface waves is given in [14]. Formation of nonlinear 
oscillations of an absolutely flexible floating plate with a nonlinear interaction of 
traveling periodic wave harmonics is analyzed in [15]. 
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The fluctuations formed in the system of an ice plate – liquid under the 
interaction of harmonics of traveling periodic surface waves of finite amplitude are 
studied in the present paper.  

 
1. Problem statement. Suppose a thin elastic plate of constant thickness h is 

floating on the surface of the homogeneous ideal incompressible fluid of constant 
depth H. In the horizontal directions, the plate and liquid are unlimited. Let us 
consider the nonlinear fluctuations of a plate in the interaction of the first and second 
harmonics of progressive waves of finite amplitude, assuming that the fluid 
movement is potential, and the plate fluctuations are uninterrupted. In dimensionless 
variables 111 ,, tkgtkzzkxx === , ∗= ζζ k , and ( ) ∗ϕ=ϕ g2 kk , where k is 
the wave number; g is the gravity acceleration; t is the time; φ(x, z, t) is the fluid 
movement velocity potential; ζ(x, t) is the plate or the plate–fluid surface elevation, 
the problem involves the Laplace equation solution 
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for the velocity potential with boundary conditions on the plate–liquid surface 
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In the initial time (t = 0) 
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Е, h, ρ1 and ν are the normal elasticity module, thickness, density and Poisson's 
ratio of the plate; ρ is the fluid density. The velocity potential and deflection of the 
plate at z = ζ are bounded by the following kinematic condition  
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In the dynamic condition (1.2), the expression with the factor κ represents the 
inertia of the vertical displacements of the plate. The first term in the brackets of 
this expression characterizes the nonlinearity of the vertical acceleration of the 
plate. 
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2. Equations for nonlinear approximations. The problem solution (1.1)–
(1.5) is obtained by the method of multiple scales [16]. Two new variables  

tTtT 2
21 ε,ε == are introduced. They are slowly varying in comparison with t = Т0, 

where ε is small but finite, and the validity of the expansions is assumed 
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Substituting φ from the expressions (2.1) into (1.1) and (1.3), within the accuracy 
up to the the third-order values, the following expression is obtained 
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Below the dynamic (1.2), kinematic (1.5), and initial (1.4) conditions are 
considered. The surface velocity potential of a plate – liquid 0εζ=z  is represented 
in the following form 
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),εζ,(,ε,εζζ 000 txff ϕ== and ),εζ,( 0 txzϕ  are substituted in the corresponding 
conditions (1.2) and (1.5), bearing in mind that, according to the complex function 
differentiation rule, the partial derivative with respect to time is defined by the 
following expression 
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taking into account the dependence of ζ0 on x and t in the expression (2.2). Then, 
collecting the coefficients at equal powers of ε and equating them to zero, the 
following equations are found 
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for the determination of nonlinear approximations. 
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Note that F2
0and F3

0 terms appearing on the right-hand sides of the dynamic 
conditions (2.4) for the second (n = 2) and third (n = 3) approximations are due to 
the nonlinearity of the vertical displacements of the plate.  

 
3. Expressions for the plate deflection and the fluid movement velocity 

potential. The equations (2.3)–(2.7) are obtained for the general case of unsteady 
fluctuations of finite amplitude. Solution of these equations in the case of 
interaction of traveling periodic wave harmonics θ=ζ cos11  and θ=ζ 2cos112 a , 

),( 210 TTTx β+τ+=θ  is to be obtained. The first approximation (n = 1) of the 
surface elevation of the plate-liquid is defined in the form as  
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where a1 is the constant of the order of unity, and β = 0 under t = 0. Satisfying the 
condition at the bottom and taking into account the relationship of the wave 
characteristics through the boundary conditions (2.4), (2.5), the following can be 
written 
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Amplitude a1 and phase shift β (Т1, Т2) are determined from subsequent 
approximations. 

Substituting ζ1 and φ1 in the right sides of the dynamic (2.4) and kinematic 
(2.5) equations for the second approximation and solving the problem (2.3)–(2.7) 
for n = 2, taking into account the requirement of absence of the first and second 
harmonics in the particular solution, ζ2 and φ2 are obtained. In turn, ζ1 and ϕ1 and 
ζ2 and ϕ2 determine the right sides of the dynamic and kinematic conditions when 
n = 3. Eliminating the terms generating secularity from them, ζ3 and ϕ3 are 
obtained. 

As a result, the basin surface elevation ζ and fluid movement velocity potential 
φ in dimensionless variables up to the third-order quantities are determined from 
following expressions  
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Here and below, the index 1 for Latin symbols x, z, t and the asterisk sign for 

Greek ζ и ϕ are omitted. 
 
4. Analysis of the results. The obtained solution (3.6) is valid outward small 

neighborhoods of the resonance values of the wave number k, which are positive 
real roots k = k1, k = k2, k = k3, k = k4 of the equations 

6...3,0cth222 ==τ−κτ−µ nnHnknn                                 (4.1) 
 

respectively. Wherein k1 > k2 > k3 > k4. Note that one of these resonance values k = 
= k1, obtained from the equation (4.1) when n = 3, coincides with the smaller of the 
two resonance values obtained in the case when the first approximation ζ1 is given 
in the form ζ1 = ζ11 [14]. 

For quantitative estimate of the influence of the elastic and mass forces of the 
plate on the characteristics of the fluctuations formed, numerical calculations were 
carried out under the values of the modulus of elasticity E = 0.5⋅109 − 3⋅109 N/m2, 
Poisson's ratio ν = 0.34 and density ρ1/ρ = 0.87, corresponding to the ice plate [17]. 
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Fig. 1 and 2 show the ice-water surface elevation profiles (ice plate bending) along 
the direction of the wave propagation (negative direction of the x-axis) for E = 3·103 
N/m2 and the values h = 1 m, Н = 100 m when t = 17 min, k = 0.21 m-1, ε = аk = 0.21 
(Fig. 1) and t = 10 h, k = 7⋅10-3 m-1, ε = 1.4⋅10-2 (Fig. 2). The profiles ζ(х) in Fig. 1, a 
and 2, a correspond to a positive value of the amplitude of the second interacting 
harmonic (а1 > 0); in Fig. 1, b and 2b – to the negative one (а1 < 0). Dashed lines are 
the profiles obtained taking into account the nonlinearity of the vertical displacement 
acceleration of the ice plate (F2

0 ≠ 0, F3
0 ≠ 0), and solid ones – without taking into 

account (F2
0 = 0, F3

0 = 0). 

Fig. 1. The wave profiles of the flexural 
deformation of the ice plate with the amplitude 
of the initial harmonic a = 1 m and wave number 
k = 0.21 m-1, in case a1 > 0 (а) and a1 < 0 (b) 

Fig. 2. The wave profiles of the flexural 
deformation of the ice plate with the amplitude 
of the initial harmonic а = 2 m and wave number 
7⋅10-3 m-1, in case a1 > 0 (а) and a1 < 0 (b) 

From the analysis of ζ(х) graphs, it follows that under the interaction of wave 
harmonics, the nonlinearity of vertical displacement acceleration of the ice plate 
during its flexural deformation hastens the wave profile displacement in the negative 
direction of the x axis (the direction of wave motion) and slightly changes the 
amplitude of the flexural wave, depending on the wave number and the 
characteristics of the plate. When а1 > 0 the maximum displacements of the basin 
surface are reached at the tops of the wave elevations, and the minimum ones – in the 
soles of the troughs. Variation of the sign of the amplitude а1 of the second 
interacting harmonic causes a substantial deformation of the flexural profile. In the 
case of а1 < 0, the maximum profile displacements appear in the form of troughs. In 
this case, taking into account the nonlinearity of vertical displacement acceleration of 
the plate during the flexion causes the slowing down of the wave propagation velocity. 
As the wavelength of the fundamental harmonic increases, the contribution of the 
higher harmonics in the troughs and elevations on the profiles of ζ(х) becomes more 
notable, and with its decrease – the wave profile approaches the harmonic form. 

Distribution of the fluctuation frequency in the linear case and due to the 
frequency displacement nonlinearity in the approximation of the order of smallness 
of ε and in the approximation of order ε2 is shown in Fig. 3, 4 and 5, respectively, 

PHYSICAL OCEANOGRAPHY VOL. 25, ISS. 1 (2018) 12 



 

when H = 100 m. In Fig. 3 the curves 1, 3 and 4 are obtained when h = 0.5 m, and 
the curves 2, 5 and 6 – when h = 1 m. The lines 3, 5 correspond to the modulus of 
elasticity E = 109 N/m2, and the lines 4, 6 – to the value E = 3⋅109 N/m2. Curves 1, 
2 correspond to the case of an absolutely flexible plate (E = 0) simulating broken 
ice. The graphs above show an increase in the linear component of the fluctuation 
frequency with increasing of the ice thickness and its modulus of elasticity, which 
agrees with [9, 17]. The shorter the wavelength (larger value of the wave number), 
the more pronounced the influence of h and E is. In the long wavelength range, it is 
practically absent. 

 
 
Fig. 3. Distribution of the fluctuation frequency 
with respect to the wave number in the linear 
case with an ice thickness 0.5 m (the curves 1, 3, 
4) and 1 m (the curves 2, 5, 6) in the case of the 
elastic modulus E = 109 N/m2 (the curves 3, 5), 
E = 3⋅109 N/m2 (the curves 4, 6), E = 0 (the 
curves 1, 2) 

 
 
Fig. 4. Distribution of the vibration frequency 
component due to the nonlinearity in the first 
approximation, without taking into account the 
factor ε = ak in case a1 > 0 when h = 0,5 m (the 
curves 1, 2) and h = 1 m (the curves 3, 4), if E  = 
= 109 N/m2 (the curves 1, 3) and E = 3⋅109 N/m2 
(the curves 2, 4) 

 

 
 
Fig. 5. Distribution of the fluctuation frequency displacement component of the second order according 
to the wave number within the accuracy of a factor when a1 > 0, in case k < k4 (а) and k > k1 (b) 
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Distribution of the nonlinearity dependent component of the fluctuation 
frequency with respect to the wave number in the approximation of order ε, 
without taking into account the factor ε = ak, is shown in Fig. 4 for а1 > 0, where 
the curves 1, 2 correspond to h = 0.5 m, and the curves 3, 4 – to the value h = 1 m. 
Curves 1, 3 were obtained when E = 109 N/m2, and curves 2, 4 – when E = 
= 3⋅109 N/m2. The dashed lines are constructed when the nonlinearity of vertical 
displacement acceleration of the plate is taken into account, and the solid lines – 
when it is not. From the figure, it can be seen that the acceleration nonlinearity 
effect (F2

0 ≠ 0, F3
0 ≠ 0) is manifested in an increase in the frequency displacement 

component in the approximation of order ε. Moreover, the contribution of 
accounting for the acceleration nonlinearity increases with increasing the wave 
number (wavelength decrease). In case when а1 < 0, the given component value is 
preserved, but the sign changes to the opposite one. It can be seen from the 
expression σ1, where а1 is present in the denominator. Consequently, a change of а1 
sign leads to a change in σ1 sign. 

Dispersion curves connecting the displacement component of the second-order 
frequency with the wave number are shown within the accuracy of a factor of ε2 = 
= a2k2 in Fig. 5 for fixed ε in the case a1 > 0. At that, in Fig. 5, a they are given for 
the wave number values from the range k < k4, and in Fig. 5, b – for k from the range 
k > k1. All the indications in Fig. 5 are the same as in Fig. 4. Behavior of the graphs 
indicates that in the range k < k4 there is a wave number value, passing through which 
the sign of the component of the order ε2 changes from plus to minus. 

In the range k > k1 this component is negative under the considered values of k. 
Taking into account the nonlinearity of vertical displacement acceleration of the 
plate reduces the component modulus value under a fixed value of k. The plate 
elasticity increase leads to an increase in the absolute value of the displacement 
frequency. A similar effect is observed with increasing thickness of the ice plate. 
The distribution character of the second-order displacement frequency with respect to 
the wave number under a fixed ε for a1 < 0 is qualitatively the same as under a1 > 0 
(Fig. 5). 

 

 
 
Fig. 6. Distribution of the fluctuations frequency 
formed in the case of nonlinear interaction of wave 
harmonics, by wavenumber when a1 > 0 (the lines 
1, 3) and a1 < 0 (the lines 2, 4), in case h = 1 m (the 
lines и 1, 2) and h = 0,5 m (the lines 3, 4) 

 
 

Fig. 7. The influence of taking into account the 
nonlinearity of vertical displacement acceleration 
of the plate on the phase velocity of the 
generated flexural-gravitational wave  
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Distribution of the fluctuations frequency ( )( )2
22

1 σ+σ+τ=σ kaakkg  
formed in the nonlinear interaction of wave harmonics is shown in Fig. 6. Here, the 
lines 1, 3 are given for a1 > 0, and the lines 2, 4 – for a1 < 0. The lines 1, 2 
correspond to a plate thickness of 1 m and the lines 3, 4 – to the thickness of 0.5 m. 
The dashed curves show distribution frequency of the fluctuations with allowance 
for the nonlinearity of vertical displacement acceleration of the plate during its 
flexural deformation, and the solid ones without taking it into account. As 
expected, taking into consideration the acceleration nonlinearity leads to the 
fluctuation frequency increase. σ also grows with increasing of the elastic plate 
thickness. The change in the sign of the amplitude a1 from plus to minus decreases 
the fluctuation frequency value under a fixed wave number. 

Influence of the consideration of the nonlinearity of vertical displacement 
acceleration of the plate during its flexion to the phase velocity of the formed finite 
amplitude flexural-gravitational wave is demonstrated by the graphs υ(k) shown in 
Fig. 7 for k > k1. They are obtained when a1 > 0, H = 100 m, h = 1 m, E = 
= 3⋅109 N/m2, both taking into account (dashed line) and without taking into 
account (thin solid line) the vertical acceleration nonlinearity. A thick solid line 
represents the phase velocity in the linear approximation. Analysis of the results of 
numerical calculations in the range of considered wave numbers shows that taking 
into account nonlinearity causes an increase in the displacement velocity of the 
flexural wave. At the same time, the increase in velocity with allowance for the 
nonlinearity of vertical displacements is greater than without taking it into account. 
Note that the value of the phase velocity increases with increasing of plate 
thickness or modulus of elasticity [9, 17]. 

If a1 < 0, values of υ(k) if the acceleration nonlinearity is taken into account are 
less than without taking it into account. In this case, υ(k), both with and without 
allowance for acceleration nonlinearity, assumes smaller values than in the linear 
approximation. 

In the range of wave numbers k < k4 (long waves), the influence of plate 
characteristics on the distribution of υ over k is not practically manifested [9, 17]. 
The dependences of υ υ(k) with and without allowance for the terms F2

0 and F3
0 in 

the expression (2.4) coincide between each other both for a1 > 0 and a1 < 0. In the 
case a1 > 0, the graph of υ(k) passes above the corresponding approximation, and in 
the case of a1 < 0 it is lower, although insignificantly. 
 

Conclusion. Asymptotic expansions up to the third-order terms are 
constructed based on the multiple scales method for the fluid velocity potential of 
the finite-depth homogeneous fluid and elevation of the plate-fluid surface (ice-
water surface). The estimation of the contribution of the values of the shift 
frequency of fluctuations due to nonlinearity in the first- and second-order 
smallness approximation is given. Dependence of these values on the sign of the 
second interacting harmonic amplitude and on the account of the nonlinearity of 
vertical acceleration of the ice plate is shown. Sign change of the second harmonic 
amplitude leads to a change in the sign of the frequency displacement component 
in the first approximation. The influence of the nonlinearity of vertical 
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displacements acceleration of the plate is manifested in the increase of this 
frequency displacement component. 

Taking into account the nonlinearity of vertical displacement acceleration of 
the plate reduces the value of the modulus of the second-order smallness 
displacement component. Increase of the plate elasticity (or thickness) leads to an 
increase in the absolute value of this component. 

Fluctuation frequency, taking into account the displacement components 
nonlinearity under the wave numbers larger than the maximum critical value, 
increases with allowance for the nonlinearity in the vertical displacement 
acceleration of the plate. The frequency also grows with the plate thickness 
increase. The second harmonic amplitude sign change from plus to minus 
decreases the frequency value under a fixed wave number. In this range of the 
wave numbers, the nonlinearity causes an increase in the velocity of flexural wave 
displacement under a positive second harmonic amplitude. The growth of velocity 
with allowance for the nonlinearity of vertical displacement acceleration is greater 
than without taking it into account. If the second harmonic amplitude is negative, 
and the acceleration nonlinearity is taken into account, the phase velocity is less 
than without it is not. 

In the long-wave range under the wave numbers less than the minimum critical 
value, the influence of plate characteristics on the phase velocity distribution by the 
wave number is not practically manifested. The phase velocity distributions along 
the wavelength with and without allowance for the acceleration nonlinearity 
coincide with each other both for positive and for negative values of the second 
harmonic amplitude. Moreover, for a positive value of the amplitude, the phase 
velocity is greater, and for a negative value, it is less than in the linear 
approximation. 
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