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Introduction. Heat and gas exchange between the ocean and the atmosphere, and stratification and 

vertical mixing in the sea upper layer are subjected to the diurnal variations of the sea surface 

temperature. 

Data and methods. The data obtained by the scanner SEVIRI in 2015 (time resolution is 1 hour) are 

used to study seasonal and spatial variability of the sea surface temperature diurnal cycle in the Black 

Sea.  

Results. During a day, the upper layer heats from 6:00 to 17:00 (the highest temperature) and then 

cools from 19:00 to 5:00 (the next morning) up to its minimum. The largest diurnal deviations of the 

sea surface temperature from the average seasonal ones are observed in spring-summer (± 0.8 °С), 

whereas the lowest deviations are typical of the autumn-winter period (± 0.1−0.2 °С). A few cases 

when the diurnal warming is high were detected and analyzed. In some regions, the amplitude of the 

sea surface temperature diurnal cycle exceeded 5 °C and reached its extreme values 7–7.2 °C. The 

low wind speed (less than 4 m/s) is an important reason of these extreme events. The most often 

intensive diurnal warming is due to the low wind conditions which are highly frequently observed in 

May. In winter the values of the sea surface temperature diurnal amplitude are minimum and do not 

exceed 1.5 °C. Since April, they sharply increase and reach their maximum 2.4 °C in May. The most 

significant sea surface temperature diurnal amplitude is observed in the Black Sea southeast region 

and in its southwest coastal part. Such spatial distribution is a result of the wind shadow zone which is 

formed by the Caucasian and Pontic mountains. 

Discussion and conclusion. The features of spatial and seasonal variability of the Black Sea surface 

temperature diurnal cycle, and its relation to the wind characteristics in different seasons are studied 

based on the SEVIRI scanner high-frequency measurements.  
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Introduction 

The most important feature of the World Ocean state, and the Black Sea in 

particular, is the ocean/sea surface temperature (SST), affecting the climate and the 

functioning of the earth ecosystem. The SST increase can lead to more frequent 

occurrence of tropical cyclones, hurricanes and typhoons, their strengthening and, 

as a result, an increase in the damage caused by them [1]. The SST diurnal cycle 
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causes breeze winds, which can significantly affect the exchange processes in the 

Black Sea coastal zone [2, 3]. This parameter is directly used in the calculations of 

turbulent heat exchange between the ocean and the atmosphere [4]. SST 

significantly affects the accuracy of ocean and atmosphere parameters estimation 

(wind speed, salinity, water vapor content, etc.) from satellite measurements in the 

microwave range [5–7]. All this necessitates monitoring of SST, its diurnal and 

seasonal variations. 

The SST diurnal cycle is determined by the combined action of the following 

three factors: solar radiation, turbulent mixing and heat transfer dynamics between the 

ocean and the atmosphere. During the day, in conditions of clear sky and weak wind, 

the near-surface water temperature rises due to the absorption of incoming short-wave 

solar radiation. It results in the formation of significant vertical temperature gradient. 

At night, convective mixing destroys the diurnal thermocline [8]. 

Since the solar heat absorption is most intense on the surface, the maximum 

temperature increase is observed within the thin surface layer boundaries (at a depth 

of ~ 0.5–1 m). However, wind mixing can propagate the absorbed heat down into the 

water column. Thus, the warming layer can expand to a depth of 10–20 m [8]. 

The magnitude of the SST diurnal cycle amplitude depends on cloud cover, 

determining the amount of incident solar radiation, and on wind mixing. Under 

insignificant cloudiness and weak wind SST can rise during daytime on up to 5 °C 

at a depth from 0.3–0.6 [8] to 7 m [9]. In summer, due to intense solar radiation 

and low winds, daily variations in surface temperature are greater than in the winter 

months *. 

With the appearance of satellite measurements on the geostationary orbit, it 

became possible to obtain information of the ocean and atmosphere parameters on 

a planetary scale with a very high temporal discreteness – from 5 minutes. These 

data made it possible to analyze the processes of variability of cloudiness, 

temperature and other parameters on time scales from several minutes to days for 

the first time. 

Currently, one of the best instruments for SST determination with a high 

temporal discreteness is the SEVIRI (Spinning Enhanced Visible and Infrared 

Imager) scanner installed on MSG (Meteosat Second Generation) geostationary 

meteorological satellites [4]. SEVIRI has a relatively high spatial resolution (from 

4 to 6 km). Such parameters make it possible to use its data for studying the cyclic 

process of diurnal warming effectively [9–12]. For example, according to the data 

of this scanner, in [13], an analysis of the SST diurnal cycle features for the 

Atlantic Ocean and several European seas was carried out. Using the data of 

SEVIRI, drifters and numerical modeling, a detailed study of SST (diurnal cycle and 

warming and cases of extreme diurnal warming) for the Mediterranean Sea for 2013 

was carried out in [4]. The thermal balance of the Mediterranean Sea was assessed and 

the seasonal and diurnal variations in heat balance were analyzed.  

* Davydov, L.K., Dmitrieva, A.A. and Konkina, N.G., 1973. Obchshaya Gidrologiya [General

Hydrology]. Leningrad: Gidrometeoizdat. Available at: http://elib.rshu.ru/files_books/pdf/img-

216094822.pdf [Accessed: 15 November 2018] (in Russian).
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It was noted that diurnal warming with an amplitude of more than 1 °C is 

characteristic for the entire Mediterranean Sea basin. Extreme diurnal warming events 

were most often recorded in the summer, with the maximum number occurring in July. 

The maximum amplitude of the diurnal variation in such cases exceeded 5 °С. 

The correlation of wind intensity and the magnitude of the SST diurnal variation 

amplitude was also revealed. It was noted that diurnal warming events were 

observed in winter, spring and autumn, but with a lower periodicity. 

However, the potential possibility of the SEVIRI scanner application for 

analyzing the SST diurnal variation in the Black Sea was used only in [14]. In this 

study the method for reducing the average error in the determination of SST fields 

based on the SEVIRI satellite sensor data for the Black Sea area was developed. The 

SST diurnal variation has a pronounced seasonal variability, which is associated with 

the seasonal variation of heat flows and wind speed. The present paper is aimed 

to study the SST diurnal cycle dynamics of the Black Sea in different seasons and 

to analyze its spatial features according to the SEVIRI scanner data. 

The data used 

The SEVIRI scanner data for 2015 on SST with 1 hour resolution and spatial 

resolution of 5 km was used in the study. The temperature measured in the IR 

range is formed in a thin layer (~ 0.1 mm) and represent the temperature of the skin 

layer [14, 15]. Data was obtained from the OSI SAF EUMETSAT archive 

(http://www.osi-saf.org/). Based on a comparison of the SEVIRI sensor data and in 

situ measurements by free-drifting buoys (drifters), in [14] the estimates of the 

measurement accuracy were given. The rms deviation of the difference between 

these measurements was about 0.45 K. 

For the wind field analysis, the Era-Interim reanalysis data on wind speed at 

a height of 10 m with a resolution of 6 hours and a spatial resolution of 0.75 ° [16], 

obtained from the ECMWF archive (https://www.ecmwf.int/), were used. In [17] it 

the Era-Interim data were shown to be in a reasonable agreement with in-situ 

measurements. 

Results and their analysis 

1. The average SST diurnal cycle in the Black Sea and its seasonal dynamics

To analyze the seasonal dynamics of the average SST diurnal cycle, the 

distribution of the average over the basin SST was calculated depending on the 

time of day and month. For this, average over the basin SST for each point in time 

was first calculated. Then, the average value for a particular hour of the day of each 

month was counted. The resulting diagram is presented in Fig. 1, a.  

* Available at: http://d33.infospace.ru/d33_conf/tarusa2018/05.pdf [Accessed: 20 January 2019].
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F i g.  1. Diagram of distribution of:  а – average over the basin SST; b – SST deviations from the 

average seasonal ones on month and local time based on the SEVIRI data  

As can be seen from Fig. 1, a, the dominant contribution to the SST variability is 

the seasonal cycle. The maximum temperature is observed in July – August 2015 

when it reaches 28 °C. At that, the highest values are recorded in August in the second 

half of the day (15:00−19:00 local time) and the lowest ones – in February – March in 

the first half of the day (from 3:00 to 5:00). 

In order to estimate  the diurnal temperature variation, the values of the SST 

average seasonal variation were subtracted from the data set in diagram in Fig. 1, a. 

The diagram of SST anomalies obtained in this way (Fig. 1, b) clearly shows that 

the diurnal variation has a significant effect on the SST variability and has 

a pronounced seasonal dynamics. 

The maximum negative anomalies of SST fall on time from 5:00 to 7:00, and 

the maximum positive ones – from 15:00 to 19:00. Thus, the warming of the upper 

layer is observed from 6:00 to 17:00 on average, and cooling – from 19:00 to 5:00 

the next morning. The greatest SST deviations from the average seasonal values 

are observed in the spring-summer period (from April to July), with the largest 

anomalies occurring in June. The maximum (in absolute value) values of the 

anomalies are 0.82 °С in the direction of increasing temperature and 0.77 °С in 
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the direction of decreasing. Minimal anomalies are observed from mid-November 

to March and do not exceed (in absolute value) 0.1–0.2 °С. 

Fig. 2 shows the spatial distribution of the June average SST, measured at 7:00 

(Fig. 2, a) and 17:00 (Fig. 2, b) of the local time, as well as a chart of the 

temperature difference (Fig. 2, c). These maps clearly demonstrate the spatial 

variability of the diurnal temperature variations. At 7:00 the SST is lower, and at 

5:00 pm – higher than the monthly average. The difference between the 

temperature values at 17:00 and 7:00 reaches 3.5−4 °C in some areas of the Black 

Sea, e.g. in the southeast of the basin. 

The largest warming areas are located in the Azov Sea and in the southeastern 

Black Sea basin. The shallow depth of the Azov Sea contributes to its rapid 

warming. In the southeast of the Black Sea, wind speed is minimal, due to the 

blocking of air masses by the high Caucasus Mountains. In general, for June 

diurnal warming with amplitude 1 °С or higher is typical for almost the entire 

water area of the Black Sea basin. The minimum temperature difference (less than 

0.2 °C) is noted only for small-sized areas, mainly in the coastal zone, particularly 

in the area of the Southern Coast of Crimea. This may be due to local features of 

the coastal zone dynamics, for example, breeze and/or upwelling effects. 

F i g.  2. Spatial distribution (June, 2015) of the average SST at 7:00 (а), at 17:00 (b); difference of 

the average values of SST in June at 17:00 and 7:00, local time (c) 

2. The SST diurnal cycle amplitude in the Black Sea

The estimates above relate to the average SST diurnal cycle, which is 

primarily determined by the diurnal variations of short-wave solar radiation. 

Another important factor that significantly affects the high-frequency SST 

variations is wind. During periods of calm under the action of solar radiation, the 

thickness of the upper mixed layer (ML) is significantly reduced, which leads to 
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the SST increase [9]. Wind mixing increase mixed layer depth and to heat it up, 

a greater amount of heat is required. 

A strong diurnal warming event associated with calm wind conditions was 

observed on May 11, 2015. Fig. 3, a and 3, b shows the spatial SST distribution at 

3:00 and 16:00 (local time) on May 11, 2015. At 3:00 the SST in most of the sea 

does not exceed 13 °C. In some areas of the western and southwestern parts of the 

Black Sea, as well as in the eastern part of the Azov basin, the SST was higher – 

from 14.5 to 15.9 ° C. On the map at 16:00, SST is much higher. It exceeds 16 °C 

throughout the basin, except the coastal areas of the Crimea and the southwestern 

Black Sea. In these areas, SST also increases, but its values are somewhat lower 

(13.6–14.5 °C). 

To calculate the amplitude of the diurnal cycle (A) according to the SEVIRI 

data, at each point where satellite measurements of SST were available, its 

maximum and minimum values per day and their difference – the amplitude of the 

diurnal temperature variation was determined. On May 11, 2015 A is over 2 °C in 

most of the basin, and in certain areas it exceeds 5 °C (Fig. 3, c). 

F i g.  3. Spatial distribution (11.05.2015) of: a – SST (°С) at 3.00 h.; b – SST (°С) at 16.00 h; c – 

amplitude of the SST diurnal cycle (°С); d – mean value of the wind speed module (m/s). The 

rectangles denote the areas within which the points intended for analysis are chosen  

Fig. 4 shows that on May 11, 2015, the average SST in the basin from 00:00 to 

6:00 almost does not change, from 6:00 to 9:00 begins to increase gradually. From 

9:00 to 14:00, the sharpest warming takes place, when the SST rises from 14.3 to 

15.8 °C. From 14:00 to 16:00 SST was constane, then it decreases to 14.7 °C. 
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F i g.  4. Variability of: а – SST average over the Black Sea area, 11.05.2015; b – average SST for the 

region 1 from 10.05.2015 to 12.05.2015 (see Fig. 3, c); c – average SST for the region 2 from 

10.05.2015 to 12.05.2015 
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In Fig. 4, b and 4, c, the SST variations are shown in areas characterized by the 

highest values of temperature difference (black rectangles in Fig. 3, c). It is seen 

that on May 11, 2015, the most significant SST variation occurs during the day. On 

this day, there is an intensive SST growth in the first half of the day and a rather 

sharp decrease in the second half compared with May 10, 2015. In area 1, the 

minimum SST value is 13.4 °C, the maximum one –15.8 °C. The amplitude of the 

SST diurnal cycle was 2.4 °C. 

Diurnal warming in area 2 is even more pronounced (Fig. 4, c). A sharp 

increase in SST from a minimum (13 °C) to a maximum (17.8 °C) is observed 

from 6:00 to 13:00, and then there is a decrease to 14.2 °C (at 23:00). Thus, the 

amplitude of the SST diurnal variation at this point reaches 4.8 °C. 

Note that in some points of the basin on May 11, 2015, the SST diurnal 

variation amplitude reaches extremely high values and is 7–7.2 °C. The same high 

values were recorded in the Atlantic Ocean area in previous works, particularly, in 

[9]. Such strong diurnal heating can significantly change the heat fluxes between 

the ocean and the atmosphere. This in turn can significantly affect the quality of 

reproduction of the atmospheric circulation in numerical models. In addition, the 

SST increase can cause a decrease in the oxygen flow into the water column, which 

negatively affects the functioning of the marine ecosystem. 

The reason for such sharp SST rise was the low wind conditions observed over 

the Black Sea from May 10 to 12, 2015. As can be seen from Fig. 5, the average 

wind speed over the Black Sea during this period did not exceed 4 m/s. The lowest 

wind speeds (<3.4 m / s) are recorded from 00:00 on May 10 to 12:00 on May 11 

local time. In this case, the minimum wind speeds (~ 2.5 m/s) are observed 

immediately before the start of the most intensive SST growth on May 11 at 3:00 

local time. 

F i g.  5. Wind speed variation averaged over the Black Sea from 10.05.2015 to 12.05.2015 

Fig. 3, d is a map of the average value of the wind speed on May 11, 2015. 

Over most of the Black Sea, the wind speed is very low and does not exceed 3 m/s. 

The exception is the southwestern area, where it reaches 6-8 m/s. There the 

amplitude of the diurnal variation is low (Fig. 3, c) and does not exceed 1.5 °C. 
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Over the eastern part of the sea, wind speed is the lowest (<2 m/s). This area 

coincides with the highest values of A, which are also observed in the east of 

the sea. Thus, the main reason for the high diurnal SST variations and their spatial 

distribution characteristics in this case is the spatial variability of the wind speed. 

During 2015 the similar high values of the SST diurnal variations were 

recorded several times, on: February 26; April 11; May 11, 14, 17, 18 and 25; 

June 1, 13; July 8, 24, and September 4. 

The SST variability for the selected dates showed that on the days of 

maximum warming, the wind speed did not exceed 3-4 m/s. At the same time, 

the most frequent maximum SST differences were observed in the southeast 

basin area. In this part of the Black Sea, wind speeds are on average minimal 

due to the blocking of air masses by the high Caucasus mountains in the east 

and the Pontic mountains in the south [18]. Most of the cases of maximum 

warming are noted in May, since this month is characterized by the lowest wind 

speeds [19]. 

Note that not only calm conditions, but also storm winds also lead to sharp 

variations in surface temperature. Wind turbulent mixing, especially a ML and 

vertical involvement of deep cold waters. These effects can lead to a decrease in 

the temperature of the Black Sea by about 10 °C [20–22]. For example, in [23] it 

was shown that a powerful quasitropical cyclone in September 2005 caused 

a decrease in the SST in the central part of the sea from 20 to 8 °C. 

Unlike shortwave radiation, wind speed has significant synoptic and high-

frequency variability. The phases of the wind speed maximum and minimum 

occurrence during the day may be different. Therefore, the amplitude values of the 

SST diurnal variation will differ from the average SST diurnal variations, presented 

in the previous section of this work. 

Fig. 6, a shows the calculated temporal variability of the average over the 

area of basin A for 2015. The highest values are observed in April - May, when 

they often exceed 2.5 °C and reach 3 °C. In these months, the action of large-

scale centers of atmospheric pressure – the Azores minimum and the Siberian 

maximum – is minimal on the Black Sea and the wind speed on average does not 

exceed 5–6 m/s, which means the diurnal heating effect, will be maximum. 

A number of high values of A are also observed in June and July, reaching 

2.5 °C. The minimum values of A are in January (0.64 °C) and November 

(0.58 °C). 

Seasonal variability of the amplitude of the SST diurnal cycle is presented in 

Fig. 6b. From January to April, a smooth increase in the amplitude of the diurnal 

variation is observed. In winter its values are minimal and do not exceed 1.5 °C. 

Further, there is a sharp increase in A to a maximum value of 2.4 °C in May, after 

which it gradually decreases. In summer A takes the values of 1.7−2 °C. In 

autumn, its further decrease from 1.85 °C in September to 1.45 °C in November 

takes place. 
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F i g.  6. Graph of variability of the SST diurnal cycle amplitude А for 2015 smoothed by the moving 

average with a window length 30 days (а), variations of the monthly average amplitude of the SST 

diurnal cycle for 2015 (b) 

The map in Fig. 7, a demonstrates the presence of spatial features in the 

amplitude distribution of the diurnal variation. The greatest diurnal difference in 

SST (i.e. warming) is observed in the southeast area and in the coastal part of the 

southwestern Black Sea. The lowest values of A are characteristic of its central and 

western parts. Such spatial variability is associated primarily with the distribution 

of the wind speed field (Fig. 7, b), which, in turn, depends on the land relief 

surrounding the Black Sea. The elevated amplitudes of the diurnal variation are 

located in the zones of the wind shadow. In the coastal areas of the southeastern 

part of the sea, the high Caucasus mountains block the winds of the eastern and 

northeastern points, and the Pontine mountains in the south are blocked by 

southern winds. Thus, there is a vast area of wind shadow. The coastal 

southwestern part of the sea is also protected from the action of strong northeast 

winds by the Pontic Mountains on the central Anatolian coast. The western and 
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northern parts of the sea are exposed to intense northeastern and northern winds, 

which leads to a decrease in SST diurnal cycle. 

F i g.  7. Spatial  distribution of: а – annual average amplitude of the SST diurnal cycle (°С); b – 

annual average wind speed module (m/s) 

Conclusion 
In the present work, based on high-frequency measurements of the SEVIRI 

scanner with a 1-hour discreteness, the features of the spatial and seasonal 
variability of the SST diurnal cycle and its relationship with wind characteristics 
were studied. The following results were obtained. 

1. The largest daily SST deviations from the average seasonal values are
observed in the spring-summer period (from April to July), the smallest – in the 
autumn-winter period (November – March). The maximum absolute values of SST 
anomalies (0.82 °C in the direction of increasing temperature and 0.77 °C in the 
direction of decreasing) are noted in June. Minimal anomalies are observed from 
mid-November to March and do not exceed 0.1–0.2 °С in absolute value. During 
the day, the upper layer warming on average occurs from 6:00 to 17:00, and 
cooling from 19:00 to 5:00 the next morning. 

2. A number of intensive diurnal warming events are considered. It was shown
that in some events the amplitude of the SST diurnal variation exceeded 5 °С and 
reached extremely high values – 7–7.2 °С. Calm conditions in which the wind 
speed did not exceed 4 m/s for a day or more over the main part of the Black Sea 
area contributed to the development of diurnal warming. The most frequent diurnal 
warming events were observed in May, when the wind speed was minimal. 

3. The seasonal variability of the amplitude of the SST diurnal variation A was
studied. From January to April, its smooth increase is observed; in winter, the 
values of A are minimal and do not exceed 1.5 °C. From April there is a sharp 
increase to the maximum value of 2.4 °C in May, after which it gradually 
decreases. In summer A takes the values of 1.7−2 °C. In autumn A further 
decreases from 1.85 °C in September to 1.45 °C in November. The increased 
amplitudes of the diurnal variation are located in the zones of the wind shadow, 
which is formed by the Caucasian and Pontic Mountains. The western and northern 
parts of the sea are exposed to intense northeastern and northern winds, which 
leads to a decrease in the SST diurnal cycle. 

The SST diurnal variation can significantly affect the heat (see, 
for example, [24]) and impulse fluxes and breeze circulation. Particularly, diurnal 
heating can significantly increase latent heat flows, on more than 10 W/m

2
 [24]. 

The study of the SST diurnal cycle effect on the processes in the atmosphere in the 
Black Sea area is an important task that requires specific numerical experiments. 
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