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Purpose. Spatio-temporal variability of the mixed layer depth (MLD) in different areas of the Black 

Sea in 1985–2017, its relationship with basin dynamics and atmospheric forcing are studied. 

Methods and Results. The study is based on the hydrological data archive for 1985–2017 including 

the measurements of the ship expeditions, the Argo buoys and the moored buoy “Aqalog”. Seasonal 

and interannual variability of the mixed layer depth was determined using the density criterion (dr = 

= 0.07kg/m3) between the surface layers and the base of the upper mixed layer.  

Conclusions. In January – March, the large-scale and mesoscale dynamics significantly affects 

the mixed layer depth variability. Minimum monthly average values of the mixed layer depth in 

winter are observed in the mesoscale cyclonic eddies and in the center of the sea (20–30 m), 

the moderate values – on the periphery of the basin (40–45 m) and the maximum ones – in 

the mesoscale anticyclones (60–70 m). Several times the mixed layer depth values exceeding 150 m 

were detected in the downwelling areas of the basin. Analysis of the whole period (1985–2017) shows 

that the mixed layer density was never more than 1015 kg/m3. This isopycnal limits the maximum 

possible depth of the upper mixed layer. The impact of wind velocity on the spatial and temporal 

variability of the mixed layer thickness is the largest in spring and autumn when the seasonal 

thermocline is weak. It is less important in summer when solar heating stabilizes the upper layer, and 

in winter when the mixed layer depth is large. Rise of the mixed layer depth in summer is observed in 

recent years that is associated with rise of the wind speed in a warm period of a year. 

Keywords: the Black Sea, mixed layer depth, vertical turbulent mixing, currents, eddies, interannual 
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1. Introduction

The mixed layer (ML) is a layer of water adjacent to the free sea surface, in 

which the main hydrological parameters of the environment (temperature, salinity 

and density) are distributed uniformly in vertical direction. The mixed layer depth 

(MLD) depends on the processes of heat, mass and momentum exchange between 

the sea and the atmosphere. MLD variability strongly impact on the state of 

the marine ecosystem, as the vertical involvement of nutrients from the deep layers 
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in ML is the main source of nutrients for phytoplankton in the central part of 

the Black Sea. The intensity of autumn-winter [1, 2] and spring [3, 4] blooming 

of diatoms directly depends on the vertical mixing processes. Summer blooming of 

coccolithophorids on an interannual scale correlates with winter cooling and 

the amount of phosphates involved in ML [5, 6]. If the MLD significantly exceeds 

the photic layer thickness, in winter the phytoplankton blooming in the Black Sea 

can be suppressed [2] due to the general lack of illumination in ML [1, 7]. 

Vertical mixing in the upper layer of the Black Sea is primarily determined by 

the mechanical effect of the wind friction stress and the buoyancy flow through 

the sea-atmosphere interface. The strongest mixing is observed in the cold season, 

when the wind forcing intensifies, and the buoyancy flow associated with 

the cooling of the sea surface is negative. 

Salinity stratification of water prevents the MLD increase. It is very strong in 

the Black Sea due to the inflow of large rivers into the upper layer and highly 

saline Mediterranean waters to the underlying layers through the Bosporus. As 

a result of this, a sharp pycno-halocline is formed at a depth of 50–150 m, which 

substantially limits vertical mixing with deep water layers. 

The pycnocline position in the Black Sea is determined by the complex 

process of interaction of brackish and saline waters. Its three-dimensional structure 

(topography) is determined by the basin dynamics. On the basin scale, 

the dominant cyclonic circulation leads to pycnocline upraise in the cyclonic gyres 

in the central part of the sea and to its lowering over the continental slope in 

the Black Sea Rim Current zone (see the review in work
1
). The intensity of 

the large-scale circulation at seasonal and interannual scales is determined by 

the wind vorticity [8–10]. Vertical movements in mesoscale eddies also lead 

to a significant change in the position of isopycnic surfaces [11–13]. For example, 

in anticyclones, the depth of the pycnocline may deepen by 50 m, and in cyclones, 

the pycnocline can rise by 40 m relative to unperturbed values [13]. 

In severe winters, strong atmospheric cooling causes significant cooling and 

increase of MLD, leading to the strongest renewal or the formation of a cold 

intermediate layer (CIL) [14–18], which is an important element of 

the hydrological structure of the Black Sea. At the same time, it was shown in [19] 

that there is no positive correlation observed between MLD and the cooling on 

interannual scales in the Black Sea. The reason for this is the impact of basin 

dynamics in severe winters, the northeastern wind intensifies, which is associated 

with an increase in the cyclonic vorticity of the wind over the basin [14, 20, 21]. 

This causes an intensification of the cyclonic circulation and upraise of the main 

pycnocline (pycno-halocline) in the sea center, which limits the vertical mixing 

[14, 22]. 

In the warm season, solar heating leads to the appearance of a seasonal 

thermocline. Thermal stratification suppresses the vertical mixing, and the MLD is 

usually small in summer [14, 23]. However, a strong wind effect can cause erosion 

of the seasonal thermocline and a significant increase in the MLD [24]. 

1 Ivanov, V.A. and Belokopytov, V.N., 2013. Oceanography of the Black Sea. Sevastopol: MHI 

NAS of Ukraine, 210 p. 
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Such processes also lead to the entrainment of nutrients from the thermocline and 
CIL and the appearance of abnormal summer phytoplankton blooming in 

the surface water layer [25]. 
The study of the Black Sea MLD was carried out in a number of works [14, 

20, 26–28], which give estimates of its spatial distribution in different seasons. 
Various MLD parameters, such as density, temperature and their relationship with 

winter cooling were studied in [15–17, 26, 27]. The goal of the present work is to 
study the spatiotemporal variability of MLD in various areas of the Black Sea and 

investigate its relationship with basin dynamics and atmospheric forcing on 
the base of long-term archive of hydrological measurements for 1985–2017 period. 

2. Data and Methods
2.1. Data 

In the present work, data on the temperature and salinity of the Black Sea for 
MLD computation was obtained from the following sources: 

1) Hydrological measurements of Soviet (Russian), Ukrainian and Turkish

vessels from the oceanographic data bank of Marine Hydrophysical
Institute from 1985 to 2017 [29];

2) Data from hydrological surveys of R/V “Aquanaut” during marine
expeditionary work of the Institute of Oceanology of RAS (R/V

“Aquanaut”) in the northeastern part of the Black Sea in 1997–2008 on
the base of high-precision immersion digital CTD probes [16, 17];

3) Measurements of Argo profilers for 2004–2017, taken from the IFREMER
archive (ftp://ftp.ifremer.fr/). The instrumental error of the profilers is

0.002 °C and 0.01psu [30]. The vertical resolution of these measurements
in the upper layer varies from 10 to 1 m for various buoys;

4) Data of the “Aqualog” profiler at the moored buoy station for 2013–2015
at the IO RAS sub-satellite polygon in the northeastern Black Sea [31].

Temperature and salinity data were vertically interpolated onto a uniform grid 
with a step of 2 m and were used to calculate the potential density according to 

the UNESCO formula. 
The ERA-Interim reanalysis data on wind speed at a height of 10 m were 

analyzed in the present work. The spatial resolution of the array is 0.75°, the time 

resolution is 6 hours. The reanalysis data was verified based on a comparison with 
contact measurements of wind speed over the Black Sea in [32]. 

The Black Sea level was determined as the sum of level anomalies 
obtained from the combined measurements of several altimeters  

(http://www.marine.copernicus.eu) and the average dynamic topography from 
[33]. Based on this data, daily velocity maps of surface geostrophic currents 

with a spatial resolution of 1/8° were calculated using geostrophic balance 
equations. 

2.2. The MLD determination method 
Both thermal and haline stratification have a significant effect on mixing in 

the Black Sea in different seasons. Therefore, the density criterion was used to 
determine MLD: it was calculated as the depth at which the potential water density 

is higher than its potential density at the upper level of measurements by a given 
value dr [28]. Based on the empirical approach, a value of dr equal to 0.07 kg/m

3
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was chosen. For an accurate MLD estimate, profiles with less than five 
measurements in the 0–50 m layer were excluded from the analysis. In addition, in 

the warm season, profiles with less than two measurements in the 0–10 m layer 
were also excluded. It should be noted that the vertical resolution in this layer was 

often insufficient to determine MLD in the warm season, when the real MLD 
values were less than 5 m. Therefore, in the indicated period, the calculated MLD 

values can be slightly overestimated. In total, more than 32,000 MLD estimates on 
the Black Sea were obtained for 1985–2017. 

F i g.  1. Composite (average) vertical structure of potential density, kg/m3 (а) and the Väisäl – Brent 

frequency, 1/s (b) for different intervals of the MLD values 

To check the selected criterion the Fig. 1 shows the composite vertical 

structure of the potential density and the Väisäl – Brent frequency for different 

MLD values. To calculate the diagram (Fig. 1, a), all density profiles for each 

interval of MLD (for example, 20–30 m) were averaged; the result was plotted in 

color. The figure shows that above MLD (black diagonal line) determined using 

the density criterion, the density is relatively uniform, and the Väisäl – Brent 

frequency is minimal and close to zero. This means that the overlying water layer 

is vertically mixed, and illustrates the suitability of the selected criterion for 

determining the MLD in the Black Sea. Note that the value of dr, chosen as 

a criterion, equal to 0.07 kg/m
3
, is less than that selected in [28] (0.125 kg/m

3
). 

Therefore, MLD estimates obtained in [28] will be somewhat higher than in 

the present work. 

3. The MLD Time Variability

Fig. 2, a shows the seasonal MLD variability, spatially averaged over various 

parts of the water area: in the central part of the sea (depths of more than 2000 m) 

and in the continental slope area (depths of 100–1500 m). The seasonal MLD 

variability is primarily determined by the heat fluxes between the ocean and 

the atmosphere. With an increase in the incident short-wave radiation at the end of 

March – April, a seasonal thermocline begins to form in the upper layer at depths 

of 10–20 m (Fig. 3, a). Thermal heating causes an increase of the water 

stratification in the upper layer, leading to a sharp MLD decrease. The graph of 

the temperature dependence of MLD (Fig. 2, b) on a 5 m horizon shows that 

with an increase in the temperature of the upper layer from 8 to 10–12 °С, i.e., only 

2–4 °С, MLD decreases two times: from 30–40 to 10–20 m. 
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F i g.  2. Seasonal variability of MLD in the central part of the sea (black line), over the continental 

slope (red line), in the cyclonic eddies (magenta line) (а); dependence of MLD in the sea center upon 

the temperature on depth 5 m (b) 

With a further temperature increase from 12 to 22 °С in the spring-summer 

period, MLD changes only slightly (Fig. 2, b). In the summer period, from May 

to September, on average t is equal to 5–10 m. The periodic effect of wind and 

waves causes mixing in the upper layer of the sea, therefore, the monthly average 

MLD values rarely drop below 5 m, even during the maximum summer heating. 

F i g.  3. Seasonal variability of the Väisäl – Brent frequency (1/s) in the central part of the sea (depth 

exceeding 2000 m) (а); average distribution of the Väisäl – Brent frequency (1/s) for different 

isobaths of the Black Sea (b) 

The maximum density gradient from April to August is observed at a depth of 

5–15 m (Fig. 3, a). 

The heat flux decrease at the end of August leads to a gradual deepening of 

the thermocline in the autumn period. From September to January, MLD in the sea 

center almost linearly depends on the surface temperature (Fig. 2, b). The vertical 

diagram of seasonal variability of the Väisäl – Brent frequency (Fig. 3, a) 

shows that the seasonal thermocline determines the stratification of the upper layer 

(0–40 m) from April to November. At this time, the average MLD values do not 

exceed 25 m. In December – January, the seasonal thermocline completely 

collapses, and the main pycno-halocline starts to play the main role in preventing 

vertical mixing (Fig. 3, a). 
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F i g.  4. Interannual variability of MLD in the central part of the sea (90-day filtration by 

the moving average) 

The interannual variability of MLD calculated on the basis of the entire data 

array is shown in Fig. 4. For the calculation, the data for the central part of the sea 

were averaged for each month, then the series was smoothed using a moving 

average with a window size of 90 days. Some features of the interannual move 

should be noted. The maximum MLD values were repeated with approximately 

a 10-year periodicity in 1993–1995, 2005 and 2015–2017. Such periodicity can be 

associated with 10-year fluctuations in the sea surface temperature field [34]. 

The long-term MLD increase in the warm season is also observed. Until the 2000s, 

MLD during the summer period was 6–8 m, and after 2010 its values exceeded 

10 m on average. Such an increase is probably associated with the wind intensity 

increase (see Section 5). 

4. Winter Distribution of MLD and its Relation to Water Dynamics

In winter, MLD distribution over the basin area is characterized by significant 

spatial variability (Fig. 5, a). This variability is caused by the difference in 

the depth of the main pycnocline position in various parts of the basin. Due to 

the general cyclonic circulation, the pycnocline is elevated in the central part of 

the sea and lowered on its periphery. The spatial distribution of the Väisäl – Brent 

frequency values on the diagram shows (see Fig. 3, b) that in the deep part of the 

sea (beyond the isobath of 2000 m) the pycnocline is located at a depth of 40–90 m 

and in the upper part of the continental slope (H> 500 m) 40 m lower — at a depth 

of 80–120 m. Such topography of the main pycnocline leads to the fact that winter 

mixing, caused by cooling of the waters and wind exposure, affects a deeper layer 

at the basin periphery. Therefore, in the coldest period of the year, from January to 

March (see Fig. 2, a; 5, a), MLD in the sea center is much lower than in 

the continental slope area [14]. In the central part of the sea, the average MLD 

values in January - March are 35, 35 and 30 m (see Fig. 2, a), while in 

the continental slope area (isobaths 200–1500 m) they are on 7–10 m larger and are 

42, 47 and 40 m, respectively. 

The maximum MLD values are observed in the northwestern part of the sea, 

where in February – March they exceed 50 m (Fig. 5, a). There are at least two 

possible reasons for the formation of the maximum MLD in this area. Firstly, 

the area is adjacent to the wide north-western shelf of the basin. In winter, 

the waters are significantly cooled in shallow areas of the northwestern shelf and 
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mixed almost to the bottom. If, as a result of cooling, their density exceeds 

the density of water in the central part of the sea, then they flow down the slope of 

the basin in the density flow regime and contribute to the MLD increase in areas 

adjacent to the shelf [35, 36]. 

Secondly, the northwestern part of the sea is characterized by intense 

mesoscale eddy dynamics. Here, the formation and stationing of the large 

Sevastopol anticyclone is observed. Downward movements in anticyclones lead to 

an additional lowering of the pycnocline and its maximum deepening. 

Convergence in anticyclones leads to the surface water accumulation, which causes 

an increase of cold storage in their cores to maximum values and intensive 

formation of CIL waters [11, 13, 23, 36, 37]. The accumulation of surface waters 

with the same properties and the lowering of the main pycnocline contribute to the 

weakening of the upper layer stratification in anticyclones [13]. The authors of [36] 

show that MLD in the Sevastopol eddy can reach high values excessing 50-60 m. 

F i g.  5. Spatial distribution of MLD: а – in a cold period (October – March); b – in a warm period 

(April – September) 
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In winter, the RMS deviation for the MLD values is quite large and is 10 m for 

the central part of the sea and 15 m for the continental slope area. Such variability 

is associated with dynamic processes – the intensity of the eddy and large-scale 

dynamics in the basin. 

To study the effect of eddies on MLD, the method of composite analysis of 

altimetry and hydrological data was used [13]. Mesoscale eddies were identified by 

geostrophic velocity data obtained from measurements of satellite altimeters. For 

this purpose, the “winding angle” method based on the allocation of closed 

streamlines in the velocity field was used [38]. The eddy sign was determined by 

the average value of the vorticity in it. The details of this algorithm, the results of 

its work on determining the characteristics of the Black Sea eddies and its 

validation are given in [39, 40]. Then, only those hydrological profiles that were in 

intense mesoscale eddies with an orbital velocity of more than 15 cm/s were 

selected. In total, 1,290 profiles were distinguished in anticyclones and 230 – in 

cyclones. Based on the profiles selected, the seasonal variability of MLD in the 

eddies of different signs was determined. 

According to Fig. 2, a, mesoscale variability affects MLD in winter, when 

vertical mixing is limited by the main pycnocline. The lowering of isopycnals in 

anticyclones leads to the MLD increase and the rise in cyclones leads to its 

decrease. In cyclonic eddies MLD is minimal and amounts to only 20 m in January 

and 30 m in February – March. In anticyclones the average MLD is maximum: in 

January it reaches 70 m, in February – 65 m and in March – 50 m. A sharp jump in 

MLD from 35 to 75 m in anticyclonic eddies is observed from December to 

January. In December, the seasonal thermocline erodes completely (Fig. 3, a), and 

the main pycnocline begins to play a decisive role in limiting the vertical mixing. 

Since the main pycnocline is lowered in anticyclones, in January MLD in these 

eddies sharply increases. The deepening of the pycnocline is determined by 

intensity of the eddies [13] and it can be expected that in the most intense 

anticyclones MLD can reach even greater values. 

To determine the areas of intensive mixing, measurement points at which 

MLD in the study period exceeded 70 and 100 m were marked in Fig. 6. Fig. 6, a 

shows its highest values are observed only in the areas of the continental slope of 

the basin, where the pycnocline is deepened. MLD more than 100 m was most 

often observed in the northwestern part of the sea. Downward movements in 

the Sevastopol anticyclone and slope convection increase the intensity of vertical 

mixing in this area. In addition, the depth of the ML lower boundary exceeding 

100 m was observed eight times in the northeastern part of the sea in 

the Gelendzhik region according to the “Aqualog” profiler measurements, once in 

the southwestern part of the sea near the Bosporus and twice in the Anatolian coast. 

It should be noted that this distribution of high MLD values is partly due to 

the spatial heterogeneity of the number of measurements – the Marine 

Hydrophysical Institute contains more data for the northern part of the sea off 

the coast of Crimea, and “Aqualog” profiler provides numerous regular 

measurements with a frequency of 6 hours in the northeast parts of the sea. 
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F i g.  6. Location of the points were the anomalously high values of MLD were observed (а); density 

(circles) and salinity (crosses) profiles in the measurement points where MLD exceeds 100 m: in 

the northwestern part of the sea on February 18, 1993 (b); nearby the South Coast of the Crimea on 

December 10, 1991 (c); in the southern part of the sea on February 2, 2012 (d) 

An example of a temperature and density profile in the Sevastopol eddy region 

for February 18, 1993 is shown in Fig. 6, b. That year the winter was severe 

and MLD temperature reached extremely low values (6.5 °C). The density profile 

shows that the upper layer is mixed down to the depths exceeding 150 m. 

Nevertheless, due to the low salinity values (18 psu), ML density does not exceed 

1014.4 kg/m
3
, i.e. it is relatively low for such a mixing depth. This indicates 

the accumulation of fresh water and the lowering of pycnocline in this area, which 

is probably due to the Sevastopol anticyclone activity. A sharp winter cooling led 

to the formation of ML of large thickness in this eddy. 

On the graph for December 10, 1991 (Fig. 6, c) near the Southern Coast of 

Crimea, the values of MLD thickness are also high – more than 100 m. However, 

the MLD was quite warm: its temperature was more than 8.8 °С and density was 

less than 1013.6 kg/m
3
. In this case, the main cause for the formation of a deep 

MLD was the dynamics of waters (convergence in the upper layer and lowering of 

the pycnocline), not the buoyancy fluxes. 

In the southern part of the basin, large values of MLD thickness were recorded 

by the modern measurements of Argo buoys in the winter of 2012, which was also 

cold. On the profile for February 2, 2012 (Fig. 6, d) it can be seen that the MLD 

thickness in the southern part of the sea reached extreme values for the Black Sea – 

140 m. Down to 140 m depth the salinity was 18.2 psu, then sharply increased by 

more than 2 psu to the values of 20.7 psu at ~ 160 m depths. Such a difference 

indicates an extremely sharp halocline which begins immediately at the MLD 

lower boundary and limits vertical mixing. At the same time, the MLD temperature 

was quite high – about 8.3 °C, i.e. it contained relatively warm surface water and 

the formation of a new CIL (with a temperature lower than 8 °C) did not occur. 
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Large MLD can negatively affect the biological productivity of the basin, 

since the depth of the euphotic layer in winter is much smaller (~ 50 m) [4]. 

Therefore, in winter in the zones of the most intense downward movements on 

the continental slope and in the anticyclones a decrease in the chlorophyll a 

concentration can be expected [1, 7]. 

As follows from Fig. 1, a, an extremely large ML thickness (more than 70 m) 

is observed only in the case of dynamic deepening of the main pycnocline 

(1015 kg/m
3
), i.e. only in the areas of strong downward movements – in 

the downwelling zones in the region of the continental slope or in intense 

anticyclonic eddies. We also note that with an increase in the ML thickness (more 

than 100 m), the stratification in the underlying layers sharply increases (see 

Fig. 1, b). This is due to the “compression” of isopycnic lines that occurs as a result 

of their deepening in the upper layer [13]. Thus, even at extreme values of MLD 

thickness vertical mixing is not able to overcome the pycno-halocline barrier and 

bring the underlying water into the upper layer. The maximum recorded potential 

density of MLD was 1014.97 kg/m
3
. In total, density values exceeding 

1014.9 kg/m
3
 were 19, and exceeding 1014.8 kg/m

3
 – 50, which is less than 0.1% 

of the entire array. Most of these high values were observed in the center of 

the eastern cyclonic gyre during the surveys in cold February 1991, when 

the surface temperature was below 5 °С. 

Consequently, the underlying layers with a higher density (more than 

1015 kg/m
3
) cannot be in direct contact with the atmosphere, and the oxygen 

supply to them is limited by sharp density stratification. The oxygen penetration 

into the lower layers is possible only as a result of diapycnic processes – turbulent 

diffusion, associated, for example, due to a vertical shear in the Rim Current [41]. 

Therefore, a sharp pycno-halocline, which limits the oxygen supply to the deeper 

sea layers with a higher density, is one of the main causes for the existence of 

a hydrogen sulfide zone in the basin [42]. 

F i g.  7. Dependence of MLD in the sea central part (а) and on its periphery (b) upon the basin-

average altimetry-derived current velocity and surface temperature 

The MLD thickness in winter is closely related to the position of the main 
pycnocline, which, in its turn, is affected by the dynamics of the basin. 

As mentioned above, during the intensification of the large-scale cyclonic 
circulation in the Black Sea, the pycnocline rises in the center of the sea and lowers 

on the periphery. Thus, a more intense circulation under the same atmospheric 
effects should lead to the ML thickening above the continental slope and its 

thinning in the center of the sea. This relation is visible in Fig. 7, which shows 
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the dependence of the MLD on the basin-averaged current velocity and surface 
temperature. With an increase in the average current velocity from 0.10 to 

0.18 m/s, the MLD in the center of the sea decreases from 35–40 m to 25–35 m at 
a surface temperature of 7–9 °С. At the same time, with an increase in the current 

velocity at the periphery of the sea the MLD increases from 35 to 50 m at 7–8 °С 
temperature, and from 25 to 40 m at 9–10 °С temperature. Note that at the lowest 

current velocity on the continental slope this relationship is broken: the MLD 
grows with a decrease in the current velocity from 0.14 to 0.12 m/s. The weakening 

of the Rim Current in this region intensifies the formation of anticyclones. 
The deepening of isopycnic lines in them can lead to an increase, rather than 

a decrease, of MLD. 

5. MLD thickness in the warm period of the year and its relation with the

wind velocity 

In the warm season the average values of MLD are 5–20 m (Fig. 5, b; 8, a). 

The minimum values of MLD are observed during the period of maximum heating 
in June – July, when they are on average less than 10 m. The position of seasonal 

thermocline is determined by the balance of buoyancy and turbulent energy fluxes 
near the sea – atmosphere boundary. In this case, a positive buoyancy flux is 

provided mainly by the flux of solar short-wave radiation. Since the latter is 
approximately uniform in the basin water area, the average values of the MLD 

thickness at the periphery and in the center of the sea practically coincide and do 
not exceed 10 m (see Fig. 2, a). RMS for estimating the MLD thickness in summer 

is also small and amounts to 2–3 m 
At the same time, the spatial distribution of MLD thickness in the spring-

autumn period is characterized by the minimum values in the eastern part and large 
values in the western part of the basin (Fig. 8, a). Such a distribution is associated 

with spatial features of the wind velocity field above the basin (Fig. 8, b) [43]. 
The prevailing wind direction above the Black Sea is the northeastern one. 

The high Caucasus Mountains form a zone of wind shadow in the southeastern 
region of the basin. In this area average wind velocity does not exceed 4 m/s. 

The maximum wind velocity (more than 6 m/s) is observed in the southwestern 

part of the sea. The positive influx of buoyancy due to the runoff of the Caucasian 
rivers and significant precipitation in the southeastern part of the sea are also likely 

to contribute to a decrease in the MLD thickness in this part of the sea. 
Wind action is the most significant cause of variability in the MLD during 

the warm season. The diagram of the dependence of MLD thickness on the basin-
averaged wind velocity and surface temperature, presented in Fig. 8, c, reflects 

the features of the relationship between thermal stratification and wind mixing. It is 
clearly seen that in 10–25 °С temperature range the MLD thickness significantly 

grows with the increase of  average wind velocity. For example, at 15 °С 
temperature the average MLD thickness throughout the basin increases by 2–3 

times: from 5–10 to 25 m with wind velocity increase from 4 to 8 m/s. At high 
temperatures the MLD thickness is less sensitive to the wind velocity variation. 

At T = 24 °С, a similar increase in wind velocity from 4 to 8 m/s leads to 
MLD increase from 5–10 to 15 m, since strong thermal stratification prevents 

turbulent involvement determined by wind action. 
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F i g. 8. Spatial distribution of the basin-average MLD (а) and the wind speed (b) in a summer period; 

diagram of dependence of the basin-average MLD on the basin-average wind speed and surface 

temperature (c); dependence of the basin-average MLD on the average wind speed in different 

seasons (d); interannual variability of the basin-average MLD and the average wind speed over 

the Black Sea in a summer period (e) 

In Fig. 8, d the dependence of MLD thickness on the wind velocity in different 

seasons is shown. As can be seen, the most significant changes in the MLD 

thickness with an increase in wind velocity are observed in the spring and autumn 

periods. An increase in the average wind velocity from 4 to 8 m/s in spring leads to 

the growth of MLD thickness from 10 to 30 m. At this time of the year, 

the seasonal thermocline is just beginning to form and is still weak, therefore, 

a strong wind effect can quickly destroy it and mix the upper layer to more high 

(winter) values of MLD thickness. In autumn, when the sea cools, the thermocline 

weakens. Strong autumn storms can destroy it to a large extent in a few days and 

make its state close to the winter one [24]. In the autumn and spring the RMS of 

average MLD thickness is 6–10 m. MLD thickness is much less sensitive to 

the wind effect in the summer. During this period, RMS of the MLD thickness does 

not exceed 2–3 m, as solar heating increases the stratification of the upper layer 

and the thermocline is the most developed. A weak MLD dependence on the wind 

is also observed in winter, when the main halocline prevents vertical mixing even 

under stormy conditions. Nevertheless, in the central regions of the sea, where 
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the main pycnocline is raised as close to the surface as possible, convective-wind 

mixing should cause its erosion and salinization of ML waters. According to 

the hypothesis of I. M. Ovchinnikov and Yu. I. Popov [44], the cooled and 

salinized ML in the central parts of cyclonic gyres is the main water source of 

newly formed CIL in the Black Sea. 

For the summer period, the interannual variability of MLD and wind velocity 

above the basin has a positive correlation with 0.54 coefficient (Fig. 8, e). 

In the years of the strongest summer wind action (velocity of more than 4 m/s) 

MLD exceeded 10 m, in years with weak summer winds it was less than 8 m. 

Note that due to the relatively low vertical resolution of measurements in the upper 

layer, the real values of MLD may be slightly lower. In the summer period 

the maximum values of MLD were observed in 1990, 1994, 2001 and 2013–2016. 

In Fig. 8, c one can also note a tendency toward an increase in MLD in recent years 

(2013–2016) compared with 2000–2012. This tendency is most likely related to 

the increase in the number of storm events in the summer period noted in [45] 

during these years. For example, in June 2001 a severe storm occurred in the Black 

Sea. Its effect caused a decrease in the average monthly temperature by 3 °C 

compared with the climatic value (18 and 21 °C, respectively). A number of severe 

storms were also noted in August 2015 [25]. These events are also visible on 

the graph of MLD thickness variability. An increase in the intensity of storms in 

the summer can lead to the entrainment of nutrients into the surface layer and 

the occurrence of intense bloom of phytoplankton in the warm season [25], 

significantly affecting the functioning of the Black Sea ecosystem. 

6. Conclusions

In this work, based on the use of a large array of hydrological measurements 

(more than 30 thousand), the analysis of MLD seasonal and interannual variability 

in the Black Sea was carried out. In the cold season, when the main pycno-

halocline limits vertical mixing, the dynamics of the basin water have a significant 

effect on the MLD. In the central regions of the sea, where the pycnocline is 

elevated, the MLD thickness from January to March is 30–35 m, which is 7–15 m 

less than in the areas of the continental slope of the basin where the pycnocline is 

deep. The maximum MLD values are observed in intense mesoscale anticyclonic 

eddies, where in winter they reach, on average, 65–70 m, and the minimum – in 

cyclonic mesoscale eddies (25–30 m). In a number of cases, extremely high MLD 

for the Black Sea, reaching 100 and even 150 m, were recorded. All these cases 

belonged to the periphery of the basin (pycnocline lowering zone). 

On the basis of a composite analysis of the MLD thickness and its density 

structure, it is shown that even with the above mentioned high values of the MLD 

the density of its waters does not exceed 1015 kg/m
3
, i.e. the waters of the main 

pycnocline, with the exception of its upper part, are not entrained in the mixing and 

do not interact with the atmosphere. 

During the heating period, the mechanical effect of the wind is the main factor 

causing the of MLD thickness variability. Light winds in the eastern part of the sea 

and strong winds in the southwestern part lead to a corresponding spatial 

distribution of MLD with a maximum in the west and a minimum in the east of 

the basin. 
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The dependences between the MLD, wind velocity and sea surface 

temperature are obtained in the work. Wind effect is most significant in the spring 

and autumn periods of weakened stratification of the upper layer waters and is less 

pronounced in the summer with a sharp seasonal thermocline during the period of 

maximum heating. At interannual scales a rather pronounced positive correlation 

between the MLD thickness and the wind velocity in summer is observed. In 

recent years (2013–2016) an increase in summer values of MLD associated with 

the intensification of summer storms [45] has been observed. 

Stratification is the main factor weakening the vertical mixing intensity in 

a particular basin of the World Ocean. The rapid global warming observed in the past 

few decades should lead to a corresponding decrease in MLD. Recent studies show 

that the haline stratification, which determines the thickness of the main pycnocline 

in the Black Sea, is also undergoing strong changes [46]. In 1980–2010 decrease of 

salinity of the upper layer was noted, which should lead to a weakening of 

the vertical mixing (see works 
1, 2

, and also [47]). However, since 2015 a rather 

intensive increase in the upper layer salinity has been observed, partially 

compensating the thermal contribution to the density stratification of the Black Sea 

waters [15, 45]. The study of the Black Sea stratification variability and the effect of 

changes in temperature and salinity of the upper layer water on it is an important 

problem that the authors plan to solve in future works. 
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