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Purpose. In order to simulate the sea hydrothermodynamics, the problem of variational assimilation 
of the sea surface temperature data is solved. The data assimilation permits to adjust the numerical 
model calculations to the measurement data obtained in the environment under study. 
Methods and Results. The mathematical model of hydrothermodynamics of the Black and Azov seas, 
developed at the Institute of Numerical Mathematics of RAS and written in the sigma coordinate 
system, is considered. The distinctive feature of the model consists in applying the splitting method to 
physical processes and spatial coordinates that can significantly simplify the variational data 
assimilation algorithm. The problem of variational assimilation of the sea surface temperature data is 
formulated. A cost functional has been introduced; it includes the control function – heat flux at 
the sea upper boundary and satellite observations of the sea surface temperature. The necessary 
condition for the functional minimum is reformulated through the optimality system including 
the direct and adjoint problems, and the control condition. Using the variational assimilation of 
the satellite-derived observations, the algorithm for solving the stated problem was developed. It takes 
into account the observational errors’ covariance matrix calculated based on the statistical 
characteristics of the sea surface temperature observational data. The algorithm implies a sequential 
solution of the optimality system in the iterative process with the specially selected iterative 
parameter. The results of numerical solution of this problem are represented by the example of 
the Black and Azov seas. 
Conslusion. The results of numerical modeling with the observational data assimilation and without it 
are compared; efficiency of the observational data assimilation procedures is shown. Influence of 
the sea surface temperature assimilation upon the other system parameters is investigated. It is shown 
that when assimilating the sea surface temperature, only temperature in the upper layers is affected, 
whereas, provided that the depth is sufficient, the profile in the lower layers remains practically 
unchanged. The impact on the other system parameters is either minimal or not manifested at all. 
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Introduction 
For reliable monitoring and forecasting of marine circulation, a data assimilation 

system should be created. One of its main components should be a physically 
complete and verified model that can be used to calculate water circulation. 
At  the  present stage of research, it is necessary to combine real data from 
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observational systems and computational experiments of mathematical models, to 
increase the accuracy of modeling and prediction of physical processes. In recent 
years, data assimilation methods have been widely used in Earth sciences, providing 
the relationship between the two main components that permit monitoring of the 
environment state. These are observations and models. Such methods were most 
widely used in meteorology and oceanography, where observations are assimilated 
into numerical models in order to obtain boundary or initial conditions (or other 
model parameters) for further modeling and forecast [1–9]. 

The problems of variational data assimilation are formulated as optimal 
control problems [10–12]. As is known, when solving minimization problems, it 
becomes necessary to calculate the initial functional gradient. A major step in this 
direction was the use of the theory of adjoint equations. The development of this 
direction is largely based on the work of Academician G. I. Marchuk. In the 70s of 
20th century G. Marchuk formulated a fundamental approach to solving 
the problem of long-term weather forecast, based on the so-called adjoint equations 
for nonlinear models of hydrothermodynamics of the atmosphere and ocean [13]. 
Later, in the works of G. Marchuk, the theory of adjoint equations and disturbances 
algorithms was developed to study various classes of problems in mathematical 
physics [14]. It turned out to be fruitful for many other areas of science. As a result, 
more or less general approaches to the study of complex systems and mathematical 
models appeared [12]. These approaches were the main content of G. Marchuk 
multiannual research and his scientific school at the Institute of Numerical 
Mathematics (INM) of RAS in various fields of mathematics and its applications 
to diffusion problems, models of environmental protection, climate theory and its 
changes [13–15], mathematical problems of satellite information processing, 
the theory of tides [16], etc. 

Currently, the most universal and promising technology for solving problems 
of the environment state monitoring and analyzing is the use of adjoint equations, 
optimal control methods [1, 10, 11] and four-dimensional variational assimilation 
of observational data [8, 17]. The application of four-dimensional variational 
assimilation (4D-Var) and the use of more frequent observational data can improve 
the accuracy of short-term forecast [18]. The principle of four-dimensional 
variational assimilation usually implies that the forecast model is “ideal” within 
the assimilation window [19]. Such an approach selects the model trajectory that 
fits the observational data in the best way. The method of data assimilation 4D-Var 
has been introduced over the past few years in various centers of numerical 
weather prediction with significant advantages [20, 21]. However, all numerical 
models are imperfect, and the next step to solve problems of modeling marine 
environments and constructing effective assimilation algorithms was to consider 
bias observation errors, correlations of observation errors and model errors in 
a weak formulation of four-dimensional variational assimilation [22–24] and 
construction of covariance matrices of observation errors and their inclusion in 
the original cost function [5]. 

The present study examines a mathematical model of the general circulation of 
the Black and Azov seas with the procedure of variational assimilation of data on 
sea surface temperature, taking into account the covariance matrix of observation 
errors. Based on the variational assimilation of observational data, an algorithm 
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for solving the inverse problem of restoring heat fluxes on the sea surface is 
proposed. The numerical model of the hydrothermodynamics of the Black and 
Azov seas, the Institute of Numerical Mathematics Ocean Model (INMOM), 
developed at the INM RAS [25], is adopted as a basis for the numerical 
implementation of the general sea circulation model. It also includes tidal potential 
recording in accordance with a special technique described in [26], where 
variational assimilation of annual average level observation data is used in 
calculating secondary tidal forces. 

In the present paper, in contrast to [10, 26], the covariance matrix of 
observation errors calculated based on the statistical properties of the observation 
data for 1982–2017 is introduced into the functional. In addition, the daily average 
satellite observations of sea surface temperature for 2017 were taken as 
the assimilated data. When modeling the Black Sea dynamics, the dependence of 
other modeling parameters on the sea surface temperature assimilation were also 
studied in the present work. 

 
Mathematical model of the Black Sea dynamics 

Mathematical model of the Black Sea dynamics is considered in geographical 
coordinates. Assume that ( ), ,U u v w=



 is the velocity vector, ζ is the level 
function, T is temperature, S is salinity. 

We write in the domain D in variables (x, y, z) when ( )0,t t∈  system of 
equations of hydrothermodynamics for functions , ,ζ, ,u v T S  in the Boussinesq and 
hydrostatics approximation [27], with Lame coefficients for a spherical coordinate 
system [28]: 
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where ( ), ;u u v=


 ( ) ( )( ) ( )( ) ( )0 0
1 0 0 0 ρ , ρ β ρ β γρ β , ,T S TS PT S T T S S T S f= − + − + +  

( )1 2 , ,f f f=
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 ,  , , T S Pf f f  ( ) ( )0 0
0ρ ,    ,   ,T S  ( )β , ,TS T S  ,aP  ( )3 3 , ,f f x y t≡  are 

prescribed functions, β , β , γ const;T S =    ( )φ φˆφ φ ,A a≡ −div grad  where index φ 

can take values of u, T, S; const 0,g = >  ( )Θ 1,R zz
R
−

≡ ≈  where R is Earth radius. 

For the system (1) in , )(0D t×  the following boundary and initial conditions 
are set [28] on the sea surface Γ ΩS = : 
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where ( ) ( )τ ,  τ ,a a
x y    γ ,,  γT S    ,,  a aT S    ,, T SQ Q    ,   T Sd d  are prescribed functions;

Un = UN (N is an external normal vector to the corresponding boundary), 
( ) ( ) / 2,n n nU U U− = −    0 0 ,| |n z zU w= == −  аnd   ( ),w w u v=  is introduced by

the following formula 

( ) ( ) ( )1, , , , , , Ω 0,
H H

z z

nw x y z t m rudz m rvdz x y t t
r x y m
    ∂ ∂

= + ∈ ×     ∂ ∂    
′ ′∫ ∫ .       (3) 

In addition, boundary conditions on the solid side wall ,Γ ,w c  on the liquid side wall 

,Γw op  and at the bottom ΓH  [26] are set. 
The initial conditions for ,  ,  ,  ,u v T S ζ  have the following form: 

0 0 0 0 0, , , , ζ ζ at 0,u u v v T T S S t= = = = = =      (4) 

where 0 0 0 0 0, , , , ζu v T S  are prescribed functions. 
The problem of large-scale sea dynamics in terms of , ,ζ, ,u v T S  functions is 

formulated as follows: find ,  , ζ, ,   ,u v T S  satisfying (1) – (4). If the functions 
,  , ζ, ,  u v T S  are found, then the function w  is determined by formula (3). 

Note that the boundary conditions above can be modified depending on 
the specific physical problem. Problem (1) - (4) is approximated by the splitting 
method using the finite difference method [28, 29]. 

The splitting method and the main features of the numerical model 
The main features of the numerical model of the Black Sea dynamics (1) – (4) 

are the simultaneous use of the splitting method [29, 30] and the transition to a σ-
coordinate system.  

Let a grid 0 1 10 ... ,j jt t t t t−= < < < < =  1Δ j j jt t t −= −  be introduced in [ ]0; t  

grid and consider problem (1) – (4) on ( )1, ,j jt t− taking in account that 

the approximate solution vector ( ) , ,ζ , , ,k k k k k ku v T Sφ ≡ 1,2,..., 1k j= − , has 
already been defined at the previous intervals. To approximate the problem, one of 
the total approximation method schemes [30, 31] is applied. It consists in 

PHYSICAL OCEANOGRAPHY   VOL. 26   ISS. 6   (2019)  518 



 

implementing the following steps (to simplify the notation, the index j for all 
components of the solutions of subproblems is omitted at these steps). 

STEP 1. Problem of the following form is considered  
 

( ) ( ) ( )1ˆ, in ,t T T j jT U T T f D t ta −+ − ⋅ = ×grad div grad                 (5) 
 

under the corresponding boundary and initial conditions.  
STEP 2. The problem 
 

( ) ( ) ( )1ˆ, in ,t S S j jS U S S f D t ta −+ − ⋅ = ×grad div grad                     (6) 
 

is solved under the corresponding boundary and initial conditions.  
STEP 3. First, the system 
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is solved with the corresponding boundary conditions and the function ( )1ζ ζj ≡  is 

taken as an approximation to ζ  at ( )1,j jt t− , then the  following problem is solved 
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where ( ) ( ) ( )( )3 3 3,u u v= . After solving (9) the vector ( ) ( )3 ,j j ju u u v≡ ≡  is taken as 

an approximation to the exact vector ( )1on ,j ju D t t−×  and the approximation 

( ),j j jw w u v≡  is calculated to the vertical component of the velocity vector.  
Thus, when the steps 1–3 are implemented, after the first step 

the approximation to T  is obtained, after the second – to S, after the third – 
the approximation to ( )  ,u u v= ,  ζ,  i.e.,  the  subproblems at these steps are 
independent of each other and can be solved in parallel.  

Another feature of the numerical solution of the complete problem (1) – (4) is 
the use of the σ-coordinate system. The transition to the σ-system can be carried 
out at the stage of considering the complete problem before applying suitable 
splitting schemes and other numerical procedures [29]. However, the transition to 
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σ-systems is also possible after applying splitting schemes, i.e., in the present case, 
as applied to problem (5) – (9). A number of other approaches to numerically 
solving problem (5) – (9) are described, for example, in [27, 29]. 

 
The problem of variational assimilation of surface temperature data 
Assume that an observational data function obsT  be given at Ω ≡Ω∪∂Ω  

when ( )1, ,j jt t t−∈ 1,2, , ,j J= …  which in its physical sense is an approximation to 
the function of the sea surface temperature (SST) on Ω,  i.e. to 0| .zT = The case 
when obsT  is found only on a subset of ( )Ω 0, ,t×  the support of which is denoted 
by 0 ,m  is allowed. Since for numerical experiments, the daily average data was 
used as obsT , then by the mean-value theorem there is at least one point  ,

kj
t  value 

of obsT , in which it is close to the daily average value for the kth day. Then, 
knowing the points { }kj

t , k = 1, . . ., K, for the assimilation procedure, 
the characteristic function 0m  in the following form can be used 
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 ∈∪= 
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Also, by means of ( )jm  the function, determining the availability of 
observational data in a given time period ( )1,j jt t−  is denoted. It is further assumed 
that the observational data is given with errors, namely: 

 

0 0|t
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where tT  is the exact solution of problem (5) where ,tQ Q=  
and ( )( )2ξ Ω 0,obs obsY L t∈ = ×  can be considered as an observation error. It is also 
assumed that errors ξobs  are random and distributed according to the normal law 
(Gaussian function) with zero mathematical expectation and a covariance operator 

( ),ξ ξ ,obs obsR E⋅ =  ⋅   ,: obs obsR Y Y→  where E  is the expected value. It is further 
assumed that R  is positive definite and, therefore, reversible. 

Assume that the additional unknown (control) is the total flux function 
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where ( ) ( ) ( )0 0 , ,Q Q x y t=  is the prescribed function; const 0α = >  is 
the regularization parameter. 

The problem of variational assimilation is formulated as follows: find 
a solution φ and a function ,Q  such that the functional (10) takes the least value. 
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As shown in [10], the optimality system that determines the solution of 
the formulated problem of variational data assimilation, according to the necessary 
condition grad 0,Jα =  is reduced to the sequential solution of the direct and adjoint 
equations and an additional expression for control ( )1, ,j jt t t−∈  1,2, , .j J= …  The 
issues of unique and dense solvability of the problem were considered in [10, 32] . 

Some of the algorithms for solving the problem under consideration by 
the example of the interval (t0, t1) should be formulated. Construction of 
approximate solutions of the complete numerical model with the simultaneous 
determination of Q  by the variational assimilation procedure can be carried out by 
the following iterative algorithm: if ( )kQ  is an already constructed approximation to 

,Q  then after solving the direct problem under ( )kQ Q≡ , the corresponding adjoint 
problem is solved, and then the following approximation ( )1kQ + is determined: 

( ) ( ) ( ) ( )( )( ) ( )1 0 *
0 1γ on Ω ,k k k

kQ Q Q Q T t tα+ = − − + ×                   (11) 

With the parameter γ ,k  which is chosen so that the iterative process considered is 
convergent [10]. Here Т* is the corresponding adjoint problem solution. After 

( )1kQ + determination, the solution of direct and adjoint problems is repeated with 
a new approximation ( )1kQ + , and then ( )2kQ + is calculated, etc. Iterations are 
repeated until a suitable convergence criterion is met.  

Due to the property of dense solvability as { }γk  parameters can be selected 
parameters calculated by the formula for 0α ≈ +  [10]: 

( )
1 1

0 0

1 * 2
0 0 obs 0 0 obs 2 0

Ω Ω

1γ ( | ) | Ω / ( ) | Ω ,
2

t t

k z z z
t t

m T T R m T T d dt T d dt−
= = == − −∫∫ ∫∫  

which can significantly accelerate the convergence of the iterative process. 
The problem above belongs to the class of four-dimensional variational 

assimilation problems. The splitting method is considered here as a method of 
approximating the original model, while the problem of variational assimilation 
itself is solved on the set ( )0 1,D t t×  (or on ( )1, ,j jD t t−×  1j > ). 

 
Results of the numerical experiments 

For numerical experiments, the three-dimensional model of 
hydrothermodynamics of the Black and Azov seas developed at the INM RAS 
[25, 26] was used. The model is supplemented by the afore-described of sea 
surface temperature assimilation block. The parameters of the computational 
domain and its geographical coordinates were set with the following 
characteristics: σ-grid of 286 × 159 × 27 points (in latitude, longitude and depth, 
respectively). The first point of the C-grid is a point with coordinates of 27.475ºE, 
40.93ºN. The grid steps along x and y are constant and equal to 0.05º and 0.04º, 
respectively. Time step Δt =5 min. The calculations were carried out with 
the regularization parameter α =10–6. 
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As the observational data obsT , the daily average satellite data on the Black Sea 
surface temperature for 2017 were used [33], which were verified and interpolated 
to the computational grid of the numerical model [34, 35]. As (0)Q  the flux 
obtained from the reanalysis data of the National Center for Environmental 
Prediction (NCEP) for 2017 was used. An example of observational data 
assimilated in numerical experiments is shown in Fig. 1. 

 

 
 
 

F i g.  1. The Black Sea surface temperature (оС), mean daily observations, June 3, 2017 
 

Based on the indicated daily average SST data for 1982–2017 the statistical 
mean and standard deviation are calculated. These statistical characteristics are 
used as coefficients in the covariance matrices of observation errors, the inverse of 
which are included as weight operators in the original cost functional in solving the 
variational data assimilation problem [36]. 

By means of the numerical sea hydrothermodynamics model presented, 
supplemented by the surface temperature assimilation procedure, calculations for 
the Black and Azov seas were carried out, taking into account the assimilation 
procedure. The calculation included the sea surface temperature assimilation obsT  
for up to 3 days. Experiments were carried out for June 2017 (the beginning period 
is the first day of the month). As an external influence for the dynamics model of 
the Black and Azov seas, real ERA-Interim data presented by the European Center 
for Medium-Range Weather Forecasts (ECMWF) for 2017 were used. 

Below some results of numerical experiments are shown. The results of 
the calculation using the numerical model of hydrothermodynamics without 
the assimilation procedure are presented in Fig. 2, a, where the average sea surface 
temperature is shown on the third day of calculation (June 3). The result of 
a similar calculation with the assimilation procedure is shown in Fig. 2, b. 
A comparison of the results shows that the model somewhat overestimates the SST 
in the southwestern Black Sea, however, the use of assimilation reduces the 
discrepancy. In the Azov Sea, the SST values are identical in both cases due to the 
lack of calculation of observational data in this region during the indicated period. 
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a 
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F i g.  2. SST of the Black and Azov seas (оС), June 3, 2017. a – model calculation without 
assimilation procedure, b – model calculation using the assimilation procedure 
 

Fig. 3 shows the difference between the SST calculated for this experiment 
(Fig. 2, b) and the observational data (Fig. 1). It can be seen from the comparison 
that the surface temperature assimilation in the numerical model permits to reduce 
the model solution deviation from the observational data obsT  for the calculation 
period. The use of variational assimilation algorithms can reduce the indicated 
deviation in some areas of the Black Sea by up to 2ºC. 

 

 
 

F i g.  3. Difference between the SST mean value resulted from the model calculation with the SST 
data assimilation procedure and that obtained from the observation data, June 3, 2017  

 
Influence of the SST assimilation process on other system parameters was also 

studied in the present work. Fig. 4 shows the difference between salinity at the sea 
surface during the SST assimilation and without assimilation. Based on 
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the calculation results, it can be concluded that the SST assimilation has a small 
effect on salinity at the sea surface (the variation doesn’t exceed 0.2 ‰). 

 

 
 

F i g.  4. Difference between the surface salinity (‰) resulted from the model calculation with the SST 
data assimilation procedure and that obtained without the SST data assimilation procedure, June 3, 2017 
 

Fig. 5 shows the difference between the velocity field on the Black Sea 
surface, calculated by a numerical model with the SST data assimilation procedure 
and without including the assimilation procedure. Here, the small effect of the SST 
assimilation procedure on water circulation on the surface of the Black Sea (up to 
7 cm/s) can be noted. 

 

 
 

F i g.  5. Difference between the surface circulation velocities (cm/sec) resulted from the model 
calculation with the SST data assimilation procedure and that obtained without the SST data 
assimilation procedure, June 3, 2017   

 
The SST assimilation procedure effect on the sea surface level in the 

numerical experiments was not observed. 
 

Conclusion 
The present paper considers the problem of numerical modeling of 

the hydrothermodynamics of the Black and Azov seas using variational 
assimilation procedures of average daily observations on the surface temperature of 
the Black Sea. The results of numerical calculations demonstrated the advantages 
of the numerical model using data assimilation procedures. One of the features of 
the developed model is the use of the splitting method, which permits to expand 
the application of assimilation procedures for the salinity and level function 
(in the presence of relevant observational data), since the steps are implemented 
independently. 
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The study shows that the model solution becomes much closer to 
the observational data when using data assimilation procedures. The data 
assimilation also permits to take into account anomalies in sea surface temperature, 
which is not always possible to do when calculating by a numerical model without 
taking into account observational data. 

Numerical calculations showed that the surface temperature assimilation 
procedure has a weak effect on other components of the complete solution of 
the problem – salinity, level and velocity functions. However, it is worth noting 
that the inclusion of tidal forces in the model has a significant effect on 
the parameters of the system. 
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