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Purpose. The paper is aimed at describing the improved integrated model of the ecological-economic 
system "coast-bay" permitting to control the balance of rates of accumulation and destruction of 
the pollutants entering the sea with coastal runoff.  
Methods and Results. The model is based on the concept of mutual adaptation of the simulated 
processes’ deviations from their standard values under the influence of external forces. The average 
multi-year values of the simulated processes are used as a stationary state of the system.  The scheme 
of the cause-effect relationships between the development of the biochemical processes in the marine 
ecosystem and the economic processes of consumption and reproduction of the marine biological and 
assimilation resources is proposed. The scheme contains the logical agents for managing the scenarios 
of these processes based on the criteria of the pollution and biodiversity levels of the marine 
environment. The system dynamic model was constructed using the method of adaptive balance of 
causes in which, in order to assess the influence coefficients, a new presentation of the normalized 
relations of the standard mean values is used. The current values of the simulated processes are used 
in the coefficient estimates. To test correspondence of the model scenarios to real processes, 
the computational experiments including the model of the ecological-economic system "coastal 
runoff-the Sevastopol Bay ecosystem" were performed. The observations-derived average multi-year 
values of phyto-, zoo-, bacterio-plankton, nitrates, ammonium, dissolved organic matter and detritus 
concentrations were used in the model.  
Conclusions. The results of the experiments confirmed possibility of managing the forecasted 
scenarios of the ecological and economic processes in accordance with the management concepts 
embedded in the model. The scenarios’ response to different variants of the external managing actions 
is shown, that makes such models a convenient tool for planning the nature-protection measures 
within the "coast-bay" systems. 
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Introduction. One of the problems of the sea coastal zone ecological economy 

is the control over the pollution level and marine environment biological diversity 
under effect of household, industrial and agricultural waste coming from the coast 
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[1–17]. In works [6, 8, 18–21], the concept of contaminated wastewater flow 
control based on integral indices of pollution, biodiversity and economic feasibility 
of discharging these waters into the sea, taking into account penalties imposed for 
pollution, is proposed. On the basis of this concept, an adaptive model of 
ecological-economic system of the coast – sea natural-economic complex was 
created by the method of adaptive balance of causes [19], which makes it possible 
to control the integral balance of inflow and destruction rates of pollutants in 
the sea. It was assumed that marine ecosystem assimilation capacity is determined 
by the intensity of the processes of harmful substances biochemical decomposition, 
which depends on a number of natural and anthropogenic factors: the nature and 
volume of household, river and rainwater runoffs, sea temperature, dynamic 
activity of water masses, etc. [7–16, 22]. 

Depending on the nature of the coastal runoff, each section of the coastal zone 
is a separate natural and economic complex of the coast – sea type, which has its 
own characteristics. An example of such a complex is the coast – the Sevastopol 
Bay ecological and economic system, which is one of the most polluted areas of 
the coastal zone. Despite the difference in the conditions for the accumulation and 
destruction of pollutions, for all coastal zone natural complexes, a general integral 
model of pollutant flow control based on the principles of environmental control 
can be proposed. 

 
Purpose. The present study is devoted to the improvement of integral model 

for managing the ecological state of the sea bay [20]. The presented model is based 
on the idea of managing the balance of two interrelated indices of the marine 
environment state: the pollution level and the biodiversity level. A method for 
controlling these indices by the degree of their deviation from the maximum 
permissible values characterizing the limits of the marine ecosystem stability is 
proposed. A new method for assessing the effect coefficients in the adaptive model 
of the ecological-economic system was applied. 

The proposed model for managing the assimilation capacity of the bay is based 
on a number of assumptions. The management task was to monitor 
the consumption and reproduction integral balance of two main types of marine 
environment resources: biological and assimilation ones. A weighted sum of 
the biological objects concentrations, which, according to long-term observations, 
constitute the basis of the food chain of the bay marine ecosystem, is considered as 
a biological resource. This resource is represented by BD biodiversity index. It was 
considered that due to the water masses transfer and diffusion, there is 
a concentration of substances averaged over the bay volume that form the integral 
index of the pollution level PL, which depends on the intensity and duration of 
the pollution coastal runoff. The assimilation resource was determined by integral 
balance S of the volumes of pollution entered the sea PLacc and that part of them 
which was neutralized for a certain period of time (0, t) by biochemical destruction. 
The integral balance was characterized by the difference in the inflow and 
destruction rates of pollutants. It was assumed that with an increase in this 
difference, the pollution concentration PL increased and the value of biodiversity 
index BD decreased. The task was to limit the flow of pollutants entering the sea by 
imposing TX penalties on the coastal social-economic system, which increase 
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the cost of its operation, since it forces it to invest additional funds in treatment 
facilities to maintain production volumes V. 

 
Materials and methods. For constructing a formal mathematical management 

model, the concept of an adaptive balance of development processes in 
the system is formulated. The concept assumed that the average long-term values 
of all simulated processes iu , which were taken as the vector of the system 
stationary state iC , are known. The management model controlled the dynamics of 
biodiversity level ,BDCBDBD' −=  varying in the vicinity of the biodiversity 
index stationary value BDC , and the pollution level PLCPLPL' −= , varying in 
the vicinity of stationary value PLC . Both indices characterized the marine 
environment assimilation capacity: they took on their minimum and maximum 
permissible values ∗BD and ∗PL  when the equality of the possible rates of 
pollution accumulation and destruction reached its maximum, which depended on 
the volume and nature of coastal runoff, as well as on the marine environment 
dynamics and ecological state. 

All processes in the coast – bay system were considered adaptive, since it was 
assumed that the system possesses certain stability: it returned to its stationary state 
when the external causes that brought it out of this state ceased to act. This 
assumption made it possible to apply the adaptive balance of causes method (ABC-
method [6, 20]) to construct a formal model of the system, in which negative 
feedbacks between processes iu  and their variation rates are embedded in 
the structure of the method equations and provide a dynamic adjustment of 
processes to each other and to external effects. At the same time, material balances 
of the reactions of substances interaction were preserved in each of the equations: 
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where ika  and ila  are the coefficients of positive and negative effects that took into 
account intrasystem interactions of the development processes; iA  are the external 
effects. 

The system of the method equations maintaining the material balances (1) had 
the following form 
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where ir  are specific rates of iu  functions variation; n is a number of modeled 
processes; m is a number of positive effects. Conditions (3) have managed 
the finding of solutions for model equations within the variability intervals of 

)20( ii Cu ≤≤  variables. 
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Now we are to consider the processes in the coast – bay ecological-economic 
system (indicators of the coastal system economic activity and the concentration of 
substances in the sea) as a reaction of transforming the system resources into its 
products. As the product amount is added up as a result of positive and negative 
increments of its mass, the positive effects of processes on each other cause 
positive increments in the mass of products, and negative effects cause negative 
increments. In order to assess the coefficients of effects, in this work we used 
a method that takes into account the relative weight of the effects changing over 
time. All the effects were considered as current contributions of resources 

jjj Cuu −=′ to the formation of product .iu  Therefore, for all resource variables, 
reduced to the product dimension by multiplying by the ratio of mean 
values 1−

jiCC , the current relative weights of effects were introduced. For example, 
for the case of two positive effects subject to the condition of maintaining 
the material balance: 

3
1

31132
1

211211 uCCauCCaCu ′+′+= −− , 
 

current coefficients of relative effects had the form  
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Thus, the effect coefficient ija  in the case of m effects could be written down 
as follows: 

 

1

,1

11

−

≠=

−−











= ∑

m

ijj
jjjjij uCuCa .                                        (4) 

 

Note that in the expressions for the normalized coefficients of effects, not 
the deviations of the variables from the mean values but the non-negative variables 
themselves were used. This excluded the vanishing of the denominators of these 
coefficients. 

Taking into account the proposed estimates of the effect coefficients, 
the system of equations of the adaptive model (2) for m positive and n – m negative 
effects was modified as follows: 
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Analysis of the results. We assume that the coastal social-economic system 

supplies the marine environment of the bay with a constant flow of pollutants due 
to the volume of production V. We assume that at the initial moment of time 
the marine environment was in a stationary ecological state, in which the balance 
of accumulated volumes of pollutants received and assimilated by the environment, 
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indicated as )(tS , remained equal to zero. This means that the rates of pollution 
inflow and their destruction were equal. With an increase in the flow of pollutants, 
a moment of time came when the rate of their destruction began to lag behind 
the rate of their entry and an imbalance in the volumes of incoming and assimilated 
pollutants arose. Above we designated the value of biodiversity index at 
the maximum possible rate of pollution assimilation as ∗BD  and the corresponding 
maximum allowable value of pollution concentration as ∗PL . From this point in 
time, the coast – sea bay control system had to limit the rate of pollutant inflow 
into the sea in order to restore the zero balance )(tS . 

To control the integral balance of the rates of pollutant inflow and assimilation 
in the management model, the logical agent of assimilation capacity R(t), which 
reacted to the excess of ∗PL value by the pollution level index PL , was applied. 
This corresponded to the biodiversity level decrease to the value .*BDBD <  It was 
also assumed that the maximum value of pollution concentration was ∗> PLCPL2 . 
Thus, the coast – sea bay system was on the upper boundary of possible stationary 
states at the maximum permissible values of pollution and minimum permissible 
values of biodiversity concentrations. 

The introduced assumptions allowed expressing the balance of the amount of 
pollution entered and assimilated by the marine environment, by the formula 

 

,τ)τ()]τ(1[)(
0

/ ∫ −=
t

VPL dVRatS      ,1)(0 ≤≤ tR                              (6) 

 

in which the assimilation capacity agent R(t) had the following representation: 
 

[ ]{ },τ)βexp()1)((τ);1αexp(;;1;)( *
accacc

*
RR tRTXTXIFPLPLIFtR −−+−<<=     (7) 

 

where Va VPL / is a current volume of discharged pollutions; accTX  is the available 
volume of economic system funds accumulated for marine pollution abatement; 

*
accTX is the required amount of these funds. 
In order to manage the ecological state of the bay, a scheme of cause-effect 

relationships between the processes of a generalized production output in the coastal 
social-economic system and biochemical processes developing in the coastal marine 
ecosystem was proposed (Fig. 1). With the growth of production output, the level of 
sea pollution increased and the integral balance of pollution accumulation and 
destruction volumes varied. This entailed a decrease in biodiversity index BD and its 
deviation from the minimum permissible value ∗BD characterizing the bioresource 
and, consequently, assimilation capacity of the marine environment. Negative values 
of ∗− BDBD difference served as a signal for the management system, which 
limited the volume of pollutant discharge into the bay through the agents of 
biodiversity BDAG  and production management VAG . 
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F i g.  1. Ecological-economic model for managing the coastal pollution runoff 

 
The coast – bay ecological-economic system formal model was based on 

the adaptive model of management, published in a number of articles [18, 20]. 
The difference of this model consisted in the fact that it used the above-discussed 
new scheme for assessing the effect coefficients based on the ratios of average 
values of the simulated processes. Therefore, the scheme of mutual effects shown 
in Fig. 1 provided the conservation of material balances (1) for all variables of 
the coast – bay system. The concentrations of phytoplankton PP, zooplankton ZP, 
bacterioplankton B, nitrates 3NO , ammonium 4NH , dissolved organic matter DON 
and detritus D were used as elements of the marine ecosystem by analogy with 
work [17]. The dynamic model of the bay ecosystem was constructed on the basis 
of equations (5), in which the dashed deviations of the variables were considered 
normalized to the corresponding mean values, and the effect coefficients were 
calculated using the formulas (4): 
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This system of equations was supplemented with equations for the concentration 
of pollutants 

 

])]},[([{2 accacc/
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which affected the ecosystem biological variables, as well as the equation for 
the biodiversity index 
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It should be noted that the agent of the biodiversity index 
),,( BZPPPAGBD controlled the value of this index for that of the species of living 

organisms in the ecosystem, which had the lowest concentration in comparison 
with other organisms at a given moment of time. Therefore, an increase in 
the concentration of one of the species did not mean an increase in the biodiversity 
index, unless this species was the limiting one for the index. 

Economic part of the coastal runoff – sea bay model included an equation for 
the demand for the generalized product of the coastal system DP 
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and the equation for the production cost E  
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Into the equation for the production output volumes V   
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the agents for managing the production profitability 
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and marine environment biodiversity level were included. 
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For assessing the profitability, the integral estimate EF was applied in the form 
of the logarithm of the system’s income accI ratio over time period (0, t) to 
the costs accE for the same period: 
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Profitability management was carried out through the penalties TX for marine 
pollution, which were calculated using the equation 
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The management agent ),(/
∗PLPLAG PLTX set the amount of fine in proportion 

to the pollution concentration value as long as it did not exceed the maximum 
permissible value ∗PL . Otherwise, the penalty increased exponentially up to 

∗PL double value: 
 

)]}τγexp(1[2;,{),(/ TXPLTX PLPLPLPLIFPLPLAG −−<= ∗∗∗ .             (16) 
 

It was assumed that the penalties are accumulated in a special fund of new 
technologies accTX  designed for treatment the coastal runoff from pollution. For 
this purpose, in the management model it was envisaged an agent that included in 
equation (9) the runoff treatment mode when the fund size reached the value ∗

accTX : 
  

)]}δτexp(1[;0;,{),( accaccaccacc −−<= ∗∗
PLCTXTXIFTXTXAG .                 (17) 

 

The initial conditions for constructing scenarios of ecological and economic 
processes were the average long-term values of all variables, which were assumed 
to be known from observations. Each of the model equations was supplemented 
with conditions (3) that controlled the finding of variables within their definition 
domains. 
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Discussion and conclusion. For testing the model, we used observational data 
in the coastal runoff – Sevastopol Bay system. Shipbuilding and ship repair 
enterprises, food industry enterprises, oil depots, thermal power plant, 
“Krymvtormet” enterprise, the infrastructure of the military, fish and cargo-
passenger ports and military units are located directly in the coastal zone of 
Sevastopol. As is shown in [16], the annual wastewater discharge into the Sevastopol 
Bay is estimated at 2 million m3, emergency discharges and storm runoffs amount to 
about 1.5 million m3. At least 1000 tons of suspended matters, 52 tons of mineral 
nitrogen and 6 tons of phosphorus inflow the bay every year [14, 16, 22] with 
the Chernaya River waters. 

In Fig. 2 the scenarios of coastal runoff management according to the scheme 
(see Fig. 1) under the conditions of constant demand for a generalized product and 
constant cost of this product are given. 

The following mean long-term values of substance concentrations (mg⋅N/m3) 
were taken for the stationary state of the bay ecosystem: 

74,37=PС , 87,18=ZC , 15=BC ,
3

42,35,NOC =
4

5,60,NHC = 15=DC . In addition, 
the average annual variation of bacterial plankton concentration over the bay area 
was used. The calculations based on model (6)–(17) were performed for 365 days 
of a conditional year. 

 

 
 

F i g.  2. Managing the scenarios of the economic (a, b, f ) and environmental (c, d, e) processes 
calculated based on the long-term data on the Sevastopol Bay ecosystem state 
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As follows from Fig. 2, a, c, at the beginning of the experiment the pollutant 
runoff exceeded the assimilation capacity of the bay, the assimilation capacity agent 
exponentially decreased )(tR index value, and pollutant accumulation rate 

accS significantly outpaced the rate of their destruction assS  (Fig. 2, b). The pollution 
concentration in the sea PL significantly exceeded the maximum permissible value 
PL* (Fig. 2, c), and biodiversity level BD was below the permissible value ∗BD  
(Fig. 2, b). Therefore, management agents began to restrict the output of products, 
and, consequently, the rate of pollution inflow into the sea (Fig. 2, c). The amount of 
penalties TX for pollution decreased (Fig. 2, c) and the production cost E became 
lower than the product cost PP (Fig. 2, a) at the 166th step of the experiment. 
However, the integral production profitability remained negative (Fig. 2, f). 

This situation persisted until the 140th step of calculations, when the amount of 
funds accumulated in the new technologies fund reached the established value 

7,1*
acc =TX  conventional units. Starting from this time moment, the agent for 

pollution runoff treatment imitated the use of new technologies for preliminary 
treatment, as a result of which the concentration of pollutants PL began to decrease 
sharply (Fig. 2, c). At the same time, the concentrations of phyto- and zooplankton 
began to increase (Fig. 2, d) which ultimately led to an increase in the biodiversity 
index BD. At the 200th step of the calculations it exceeded the permissible value of 

2,5* =BD conventional units. Note that the average long-term scenario of bacterial 
plankton concentration used in the calculations (Fig. 2, d) was a limiting factor in 
estimating the biodiversity value. 

After restoring the balance of pollution accumulation and assimilation rates, 
the assimilation capacity agent took 1)( =tR value (Fig. 2, b), the production 
limitation was removed and the production volume increased to the demand level 
DP (Fig. 2, a). 

From this time point, the production profitability began to increase rapidly, 
despite significant penalties applied to the economic system in the initial period of 
the experiment, and at the 270th step it reached positive values (Fig. 2, f). 

 
Conclusions. Thus, computational experiments have confirmed the property 

of the proposed adaptive model to predict scenarios of ecological and economic 
processes that are consistent with the management concepts embedded in 
the model. The applied method of estimating the coefficients of the adaptive model 
equations by the normalized current ratios of the process average values made 
provided the construction of the coast – bay system quantitative model based on 
the minimum volume of observations – the average long-term values of 
the simulated processes. The ability to simulate model responses to various options 
for external control actions makes such models a convenient tool for planning 
environmental actions in coast – bay systems. 
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