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Purpose. The dynamics of nonstationary, nonlinear, axisymmetric, warm-core geophysical surface 
frontal vortices affected by Rayleigh friction is investigated semi-analytically using the nonlinear, 
nonstationary reduced-gravity shallow-water equations. The scope is to enlarge the number of known 
(semi)analytical solutions of nonstationary, nonlinear problems referring to geophysical problems and 
even to pave the way to their extension to broader geometries and/or velocity fields. 
Methods and Results. The used method to obtain the solutions is based on the decomposition of the 
original equations in a part expressing their prescribed spatial structure, so that they can be trans-
formed into ordinary differential equations depending on time only. Based on that analytical proce-
dure, the solutions are then found numerically. In this frame, it is found that vortices characterized by 
linear distributions of their radial velocity and arbitrary structures of their section and azimuthal ve-
locity can be described exactly by a set of nonstationary, nonlinear coupled ordinary differential equa-
tions. The first-order problem (i. e., that describing vortices characterized by a linear azimuthal veloc-
ity field and a quadratic section) consists of a system of 4 differential equations, and each further 
order introduces in the system three additional ordinary differential equations and two algebraic equa-
tions. In order to illustrate the behavior of the nonstationary decaying vortices and to put them in the 
context of observed dynamics in the World Ocean, the system's solution for the first-order and for the 
second-order problem is then obtained numerically using a Runge-Kutta method. The solutions 
demonstrate that inertial oscillations and an exponential attenuation dominate the vortex dynamics: 
expansions and shallowings, contractions and deepenings alternate during an exact inertial period 
while the vortex decays. The dependence of the vortex dissipation rate on its initial radius is found to 
be non-monotonic: it is higher for small and large radii. The possibility of solving (semi)analytically com-
plex systems of differential equations representing observed physical phenomena is rare and very valuable. 
Conclusions. Our analysis adds realism to previous theoretical investigations on mesoscale vortices, 
represents an ideal tool for testing the accuracy of numerical models in simulating nonlinear, nonsta-
tionary frictional frontal phenomena in a rotating ocean, and paves the way to further extensions of 
(semi-) analytical solutions of hydrodynamical geophysical problems to more arbitrary forms and 
more complex density stratifications. 
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1. INTRODUCTION 
Geophysical frontal vortices are frequently observed in the ocean and they have at-

tracted the interest of a large number of investigators (see, e. g., [1, 2] for a review of 
particularly significant results). Particularly, they are believed to play a fundamental 
role in different, important oceanic phenomena like, e. g., those related to the transfer 
of physical, chemical, and biological properties across frontal regions (see, e. g., [3–9]), 
to the formation and transformation of water masses (see, e. g., [10, 11]), and to the 
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downward propagation of wind generated near-inertial waves [12, 13]. This extraordi-
narily large relevance explains why, in the last decades, oceanic frontal vortices have 
been deeply investigated experimentally, analytically and numerically (see, e. g., [1, 
14–21]). Note that the geophysical relevance of those features involves not only the 
near-surface ocean, but its interior and abyssal layers as well.  

A prominent role in the theoretical investigation of geophysical frontal vorti-
ces has been played by the nonlinear, reduced gravity shallow water equations [18, 
20, 22–26].  

Although these equations do not allow for the development of baroclinic insta-
bilities or for the radiation of energy toward the interior ocean via internal waves 
propagation, their use enables to explain different characteristics of observed frontal 
vortices [18, 20, 22–26]. Moreover, the possibility of expressing analytically the evo-
lution of a broad class of geophysical frontal vortices using these equations repre-
sents a valuable way for testing the accuracy of numerical models for non-stationary, 
nonlinear, frontal phenomena of geophysical relevance [18, 19, 22, 27].  

Fundamentally, in the case of circular symmetry, the features emerging as ana-
lytical solutions in the reduced-gravity frame are characterized by inertial oscilla-
tions affecting both radial and tangential velocities and vortex’s depth: The vortices 
contract and expand during an exact inertial period [22, 25]. Note that, in these 
analytical solutions, the vortex’s radial velocity field is constrained to be a linear 
function of the vortex’s radius, while the azimuthal velocity field and the vortex's 
section can show a more complex shape [25, 26]. A More complex behavior is also 
possible for frontal vortices characterized by elliptic sections: In this case subiner-
tial and superinertial oscillations emerge as a part of the corresponding analytical 
solution (see [22]). 

On the (unavoidably obscure and hence also profoundly fascinating) way of 
searching for analytical solutions of systems of unsteady, nonlinear coupled partial 
differential equations the fundamental step consists in their reduction to a system of 
ordinary differential equations. A possibility is to prescribe the spatial characteristics 
of (part of) the system, hence reducing the problem to the search of the temporal be-
havior alone Has this step been performed, so different methods can be attempted to 
solve analytically the obtained system. But, even if an analytical solution cannot be 
found, once the reduction has been performed, numerical methods often allow then 
for an extremely accurate simulation of the involved dynamics, as the originally mul-
tidimensional problem has been reduced to a monodimensional one. 

In the case of frontal mesoscale vortices of the ocean, one has also to note that, 
among the different scales characterizing their temporal variability (from the super-
inertial ones affecting the swirl velocity of elongated elliptical anticyclones to the 
exactly inertial one typical of the circular pulson and to the super inertial –
subinertial modes emerging in warm-core eddies on a β-plane, see, e. g., [20, 24]) 
that associated with their frictional decay plays a particular role, because it contrib-
utes to determine the fate of these mesoscale features: In the case of warm-core 
rings, for instance, their remarkable longevity enables disintegration in coastal are-
as and/or re-absorption by the parent current to fundamentally contribute to their 
dissipation/variability [28–30]. Note that a similar longevity can be observed for 
the corresponding features of the interior ocean [5, 31]. 
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In the present investigation, the dynamics of nonstationary, nonlinear, ax-
isymmetric, warm-core geophysical surface frontal vortices affected by Rayleigh 
friction is analyzed semi-analytically using the nonlinear, nonstationary reduced-
gravity shallow-water equations. In order to illustrate the behavior of the nonsta-
tionary decaying vortices and to put them in the context of observed dynamics in 
the World Ocean, the system's solution for the first-order and for the second-order 
problem is then obtained numerically using a Runge-Kutta method. The solutions 
demonstrate that inertial oscillations and an exponential attenuation dominate the 
vortex dynamics: Expansions and shallowings, contractions and deepenings alter-
nate during an exact inertial period while the vortex decays. The dependence of the 
vortex dissipation rate on its initial radius is found to be non-monotonic: It is high-
er for small and large radii. Our analysis adds realism to previous theoretical inves-
tigations on mesoscale vortices, represents an ideal tool for testing the accuracy of 
numerical models in simulating nonlinear, nonstationary frictional frontal phenom-
ena in a rotating ocean, and paves the way to further extensions of (semi-) analyti-
cal solutions of hydrodynamical geophysical problems to more arbitrary forms and 
more complex density stratifications. 

The paper is organized as follows: In the next section the mathematical model is 
illustrated and its reduction to a system of ordinary differential equations is present-
ed. Numerical solutions obtained using a Runge-Kutta methods are discussed in sec-
tion 3. Finally, the obtained results are discussed und conclusions drawn in section 4. 

 
2. THE MATEMATICAL MODEL 

In the frame of the non-stationary, nonlinear reduced-gravity equations on an 
f-plane we consider the frictional (Rayleigh) dynamics of a circular, frontal warm-
core eddy: A lens of light water of density ρ lies on the top of a heavier, infinitely 
deep quiescient ocean of density ρ* (Fig. 1). Assuming circular symmetry, the mo-
tion of the active layer can be expressed as follow in cylindrical coordinates (r, z, φ): 
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In the expressions above, t is the time, {u; v}(r, t) are, respectively, the radial 

and the azimuthal projections of the horizontal velocity, h(r, t) is the vortex thick-
ness, ( )*ρ/ρ1−=′ gg  the reduced gravity (where g represents the acceleration of 
gravity), while f is the (constant) Coriolis parameter, and s the (constant) friction 
coefficient.  

Any solution of the system (1) – (3) has to satisfy the condition 
 

h(r0, t) = 0    (4) 
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F i g.  1. Radial section of the considered vortices 
 
on the movable surface circular boundary of the vortex (its surface rim) located at 
r = r0 (see Fig. 1).  
 

Reduction of model to a system of ordinary differential equations. Let us 
now assume that velocity fields and vortex thickness be characterized by the fol-
lowing horizontal structures: 
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where A, iB  and jC  are functions of time only, and N ≥ 1. Note that the condition 
that the thickness h of the vortex be positive and satisfy (5) implies  
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A substitution of (5) into (1) – (3) yields the following system of nonstation-
ary, nonlinear, coupled, ordinary differential equations (ODEs) and algebraic equa-
tions in the unknown functions A, iB  and iC : 
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where ilδ  is the Kronecker delta, and iB = 0 for i > N. The initial conditions for the 
coefficients A, iB  and iC  are: 
 

A(0) = A0,     Bi(0) = Bi0,     Ci(0) = Ci0.                       (9) 
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First-order reduction (N = 1). In order to discuss fundamental characteristics 
of the dynamics of frictional vortices described above, in the following we will fo-
cus on their first-order and second-order expressions. 

Let us consider the first-order expression of the vortex fields expressed in (5) – 
(7): 

u = A(t)r,   v = B1(t)r,   h = C0(t) + С1(t)r2,                         (10) 
 

with A, B1, C0 and C1 unknown functions of time only. The requirement that the 
vortex has positive thickness h and the condition (4) yield: 
 

C0(t) > 0,      С1(t) < 0.                                               (11) 
 

Substituting the expressions (9) into (1) – (3) and equating the coefficients of 
equal powers in r leads to a system of four ODEs in the variables A, B1, C0 and C1: 
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02 0
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04 1
1 =+ AC

dt
dC .                                             (15) 

 

The system of equations (12) – (15) must be supplemented with the following 
initial conditions:  

 

A(0) = A0,     B1(0) = B10,     C0(0) = C00 > 0,     С1(0) = С10 < 0.           (16) 
 

Second-order reduction (N=2). Let us now pass to the second-order expres-
sion of the vortex fields:  

 

u = A(t)r,   v = B1(t)r +B2(t)r3,   h = C0(t) + С1(t)r2 + С2(t)r4 + С3(t)r6,     (17) 
 

with A, B1,2 and C0,1,2,3 unknown functions of time only. Substituting the expressions 
(17) into (1) – (3) and equating the coefficients of equal powers in r leads to a system 
of seven ODEs and two algebraic equations in the variables A, B1,2, C0,1,2,3: 
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dt
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,04 22
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dt
dB                                         (22) 
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,02 0
0 =+ AC

dt
dC                                              (23) 

 

,04 1
1 =+ AC

dt
dC                                              (24) 

 

,06 2
2 =+ AC

dt
dC                                             (25) 

 

08 3
3 =+ AC

dt
dC .                                            (26) 

 

Analytical solution of the first-order problem without dissipation. To illus-
trate the general characteristics of the dynamics of the inviscid (s = 0) solutions of 
(6) – (8) (see, e. g., [24, 25]) we will shortly summarize the properties of the first-
order analytical solution. In this case, indeed, one finds:  
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where R0 is the initial vortex radius, 
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Here [ ],1,0∈  ϕ, and с > 0 are constants. The solution (27) describes a pulsating 
vortex: Expansions and shallowings, contractions and deepenings alternate during 
an exact inertial period [24, 25]. Note that the pulsation amplitude is determined by 
the value of γ. In the numerical experiments of the following section this solution 
will be used to define the (ageostrophic) initial conditions for calculating of the 
vortex oscillations in the frictional case. 

The kinetic, potential, and total energy, Ekin, Epot, and Etot of the vortex, whose 
structure is described by (6) – (8) can be expressed as:  

 

2 2 2
pot kin

1 1ρ ' ,   ρ ( )
2 2

S S

E g h dxdy E h u v dxdy= = +∫∫ ∫∫ , 

where S corresponds to the time-dependent vortex surface. 
 

3. NUMERICAL SOLUTIONS 
First-order solutions. The system of equations (12) – (15) with the appropri-

ate initial conditions (16) was solved numerically using a Runge-Kutta method of 
the fourth-order. 

In order to select realistic values for the solution we refer to the detailed statistics 
of the Gulf Stream rings observed between 1974 and 1983 which can be found in [32]. 

An appropriate value for the friction coefficient s in Eqs. (1), (2) can be select-
ed to reflect observed lifetimes of geophysical oceanic vortices. Assuming an ex-
ponential decay of the vortex velocity field, tlife will represent the vortex e-folding 
time, and hence s = 1/tlife. Typical observed values for Gulf Stream rings are [32]: 
initial radius R0 = 75 km, tlife = 130 days, latitude = 38°N and initial depth 
h0 = 500 m. Therefore, the corresponding friction coefficient s = 1/ tlife = 8,903 · 10–8 s–1. 
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In our evaluations we set moreover 01,0=′g  m·s–2 for the density difference be-
tween vortex and ambient water, and ϕ = 0. 

The temporal evolution of a first-order frictional vortex is shown in Fig. 2: in 
particular, depicted are the radial velocity U = A(t)r0(t) and the azimuthal velocity 
V = B1(t)r0(t) at the (temporally varying) vortex rim r0(t), as well as the maximum 
vortex thickness H = C0(t) at its center. Exact inertial oscillations clearly emerge: 
as in the inviscid case, expansions and shallowings, contractions and deepenings 
alternate during an exact inertial period [24, 25], while both velocity amplitudes 
and maximum thickness decrease and radius increases as time elapses due to the 
action of the Rayleigh friction. 
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F i g.  3. Temporal evolution of the kinetic (Ekin), 
potential (Epot), and total (Etot) energy of the vor-
tex. The initial radius of the vortex is R0 = 
= 75 km, the amplitude oscillation parameter is 
γ = 0.2 
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F i g.  2. Inertial oscillations and attenuation of 
radial (a) and azimuthal (b) components of the 
horizontal velocity, maximum depth (c) and radius 
(d) of the vortex. The initial radius of vortex is 
R0 = 75 km, the amplitude oscillation parameter is 
γ = 0.2. T represents the inertial period (T = 19.49 h) 

F i g.  4. Temporal evolution of the vortex total 
energy (Etot) for different durations vortex longevi-
ties: 1 – tlife = 60 days; 2 – tlife = 120 days; 3 – tlife 
= 180 days. The initial vortex radius is R0 = 75 km, 
the amplitude oscillation parameter is γ = 0.2 
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Frictional decay is also evident in the evolution of the vortex integral energy 
characteristics (Fig. 3). As in the inviscid case, vortex kinetic and potential energy 
show exact inertial anti-phase oscillations, however, they also decay in time to-
gether with the vortex total energy which monotonously decreases. 

In Fig. 4 the vortex total energy decay is depicted as a function of different 
vortex frictional coefficients (or, equivalently, as a function of different vortex lon-
gevities). Larger frictions produce faster energy decays, the latter decreasing with 
increasing coefficients. Larger oscillations (expressed by the magnitude of the pa-
rameter γ) lead to faster energy dissipation (Fig. 5). In Fig. 6 the temporal evolu-
tion of the total energy is depicted as a function of the initial vortex radius. The 
dissipation rate of is the largest for initially small and large features, and smaller 
for intermediate ones. 

 

  
 
F i g.  5. Temporal evolution of the vortex total 
energy (Etot) for different values of the amplitude 
oscillation parameter γ: 1 – γ = 0.1; 2 – γ = 0.2; 
3 – γ = 0.3. The initial vortex radius is R0 = 
= 75 km, the friction coefficient is s = 8.903 10–8 s–1 

 
F i g.  6. Temporal evolution of the vortex total 
energy (Etot) for different values of the initial vor-
tex radius: 1 – R0 = 75 km; 2 – R0 = 150 km; 3 – 
R0 = 225 km; 4: R0 = 300 km. The amplitude os-
cillation parameter is γ = 0.2, the friction coeffi-
cient is s = 8.903·10–8 s–1 

 
Higher-order solutions. As an example of the frictional vortex evolution for 

a high-order pulson we now present results referring to the second-order problem, 
which is described by the system (18) – (26). Like in the previous case, the solu-
tions have been computed numerically using a fourth-order Runge-Kutta algorithm. 

The evolution of the vortex velocity fields and radius closely resembles that 
elucidated for the fist-order solution (Fig. 7). As time elapses, the amplitudes of the 
oscillations (which are still exactly inertial) decrease and the radius increases as 
time elapses, due to the action of the Rayleigh friction. 

Associated to this behavior we note a more complex evolution of the different 
fields. As indicated previously, in the inviscid as well as in the frictional solutions 
the radial velocity u has to be a linear function of radius for each order and fric-
tional coefficient in order for the problem to be reduced to a system of ordinary 
differential equations. The influence of friction, hence, cannot alter the shape of the 
radial velocity horizontal distribution: Instead, it leads to a monotonic decrease of 
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the radial velocity amplitude with increasing values of the frictional parameter s. In 
the second-order problem considered, the inviscid tangential velocity v used as ini-
tial condition for the frictional simulations largely deviates from the linear one 
characterizing the first-order problem. In this case (not shown), it reaches its max-
imum well within the vortex body and then decreases toward the periphery. Note 
that such kind of distributions has been found as being the one typically emerging 
in the first evolutionary stage of an impulsive vortex generation obtained in tank 
experiments devoted at investigating geophysical frontal vortices (see [18]). Fric-
tion induces a tendency toward a decreasing amplitude and nonlinearity of the tan-
gential velocity distribution. The region of maximum values experiences a shift 
toward the vortex periphery as the friction coefficient s increases. Accordingly, the 
deviation in the form of the vortex section from a parabolic one also decreases as 
the friction increases.   
 

 
 

F i g.  7. Inertial attenuating oscillations of radial (a) and azimuthal (b) components of the horizontal 
velocity, maximum depth (c) and radius (d) of a second-order vortex solution. The vortex is charac-
terized initially by a radius R0 = 75 km, a thickness h0 = 500 m, and an amplitude oscillation parame-
ter γ = 0,2. The friction coefficient corresponds to a tlife = 130 days, i.e., s = 1/ tlife = 8,903 · 10–8 s–1  
 

4. DISCUSSION AND CONCLUSIONS 
In the present paper we have analyzed aspects of the dynamics of nonstation-

ary, nonlinear, axisymmetric, warm-core geophysical surface frontal vortices af-
fected by Rayleigh friction in the frame of the nonlinear, nonstationary reduced-
gravity shallow-water equations. In this frame, we have shown that, in the case of 
circular features characterized by radial velocities which are linear functions of the 
vortex radius, it is possible to reduce the problem to a set of ordinary differential 
equations like in the case of the pulson described by [25]. This step, which is per-
formed by prescribing the spatial structure of the investigated eddy and hence re-
ducing the vortex variability to the temporal one alone, is the fundamental one in 
the (unavoidably obscure) search of exact analytical solutions of complex problems 
expressed in terms of nonstationary, nonlinear, coupled partial differential equa-
tions depending on space and time. In the present case, however, it seems that ob-
taining exact analytical solutions is not a straightforward task. Hence, we concen-
trated on numerical solutions using a fourth-order Runge-Kutta method. These so-
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lutions, however, can be believed to represent an excellent approximation to the 
exact ones, as the problem has been reduced to a monodimensional one and hence 
the method allows for a very high accuracy.  

In order to illustrate the behavior of the decaying vortices, the system's solu-
tions for the first-order and for the second-order problem have been considered. 
For both cases, inertial oscillations and an exponential attenuation dominate the 
vortex dynamics: Expansions and shallowings, contractions and deepenings alter-
nate during an exact inertial period while the vortex decays. The dependence of the 
vortex dissipation rate on its initial radius is found to be non-monotonic: It is high-
er for small and large radii. For realistic values of the friction coefficient we obtain 
a relatively high longevity of the simulated features, which is consistent with many 
observations indicating as long-living both the features of the near-surface and 
those of the interior ocean. Obviously, our study in the frame of the reduced-
gravity theory does not allow for many of the interactions with the ambient ocean 
and the atmosphere which are known to be able to exert an influence on the stabil-
ity, attenuation, but also reemergence of frontal features in the real ocean. [9] for 
instance, using a hierarchy of coupled realistic numerical models studied the persis-
tency of a convectively generated frontal vortex in the Greenland Sea: here the in-
teraction with the atmosphere can contribute to the preservation of the feature at 
the ocean near-surface or to its transformation into an intermediate one, which, 
possibly can reemerge throug convective activity. 

Nevertheless, our analysis adds realism to previous semi-analytical investiga-
tions on mesoscale vortices, which were limited to the inviscid case and, most of 
them, to the first-order solution of the pulson family. It also represents an ideal tool 
for testing the accuracy of three-dimensional numerical models in simulating real-
istic geophysical problems, as it refers to nonlinear, nonstationary frictional frontal 
dynamics in a rotating ocean. Moreover, it paves the way to further extensions of 
(semi-) analytical solutions of hydrodynamical geophysical problems to more arbi-
trary forms and more complex density stratifications. 
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