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Purpose. The aim of the work is to test the bispectral wavelet analysis being applied as a tool for 
studying resonance interactions between the frequency components in the spectrum of internal waves 
(based on the example both of the model signals, the shape of which is similar to that of the solitons 
and boras, and the field observations data on temperature fluctuations resulted from the internal waves 
in the Gorlo Strait of the White Sea). 
Methods and Results. The paper represents a technique for detecting three-wave interactions in 
the internal waves’ spectrum. The method is based on the bispectral wavelet analysis. It permits to 
identify the interharmonic correlation and the magnitude of the quadratic phase relationship arising as 
a result of nonlinear interactions between the signal frequency components. In the first part of the paper, 
efficiency of the applied method was evaluated using the example of various artificial signals with 
quadratic nonlinearity in order to demonstrate the method features and advantages. In its second part, 
the method was used to analyze the temperature profiles obtained by scanning thermohaline sounding, 
in which the oscillations related to passing of the internal wave groups were recorded. It is shown that 
the waves with the 40 min period are generated due to quadratic nonlinearity. The auto-bicoherence 
function values confirm the fact that the higher harmonics are formed in the 60–120 min range as a 
result of the three-wave interactions. They change synchronously in time, and their amplitudes are 
proportional, that is typical of the initial stage of the waves’ nonlinear transformation. Absence of a 
periodic change in the biphase sign in the considered range indicates insignificant influence of the 
dispersion effects upon the short-period internal waves’ structure. 
Conclusions. The example of observations in the Gorlo Strait of the White Sea shows that the recorded 
asymmetric structure of the isotherm oscillations was formed being influenced by the three-wave 
interaction. Possibility of further application of the method for studying the processes of the internal 
waves’ nonlinear transformation and breaking is discussed. 
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Introduction 
For the analysis of stationary signals, the methods of classical spectral analysis, 

such as fast Fourier transform or cross-spectral analysis, are sufficient as a rule, 
while it is assumed that the variable is distributed according to the Gaussian law [1, 
2]. Spectral power density estimates are useful in determining the contribution of 
each spectral component to the overall spectrum of a time series signal. However, 
the traditional analysis based on the second-order spectra obtained using the classical 
Fourier transform is inapplicable for non-stationary signals with time scales that are 
much smaller than the realization length of the signal under study. At the same time, 
local changes make almost no contribution to the resulting spectrum. For example, 
the signals corresponding to nonlinear internal waves (IWs), such as solitons and 
boras, have an asymmetric and sawtooth shape. Accordingly, such oscillations are 
described by statistics of a random process, different from Gaussian 1 ones. The most 
obvious method for studying the spectral properties of such processes is the wavelet 
analysis. For example, when using complex functions, continuous wavelet transform 
provides the study of dynamics of such characteristics as instantaneous frequencies, 
instantaneous amplitudes and instantaneous phases of rhythmic processes identified 
in the structure of the analyzed signal. 

In order to analyze the nonlinear IWs, one can use more complex statistical 
characteristics of signals, such as higher-order spectra (poly-spectra) [3], obtained 
using Fourier transforms of cumulant functions 2. In this case, spectral characteristics 
of odd orders, for example, a spectrum of the third order (bispectrum ), which is the 
Fourier transform of the third-order cumulant function, can be useful for refining the 
asymmetry parameters of the signal under study [4]. When studying symmetric 
nonlinearities, a more powerful tool is the fourth-order spectrum (trispectrum), since 
it is a frequency expansion of kurtosis [5]. Spectral analysis based on higher-order 
spectra makes it possible to quantify nonlinearities, characterize their types, and 
detect interacting harmonics within a time series, which is especially important for 
studying the characteristics of real internal waves. 

The expediency of using polyspectra is justified by the ability to extract important 
information about the coherent relationships of pairs of spectral components in the 
observed process, which is lost when assessing the energy spectrum. 

Bispectral wavelet analysis provided not only the identification of interharmonic 
correlation, but also the investigation of temporal dynamics of the phase relationship 
between certain components in complex nonstationary signals. The normalized 
bispectrum (bicoherence) characterizes the phase relationships (phase connection) 
between different frequency components of the signal [6]. The bispectrum of a process 
with an asymmetric distribution law is not zero. This allows bispectral analysis to be 
used as a sensitive indicator of nonlinear processes. 

When the signal contains two harmonics with 𝑓𝑓1 and 𝑓𝑓2 frequencies 
simultaneously with their sum 𝑓𝑓3, and the sum of the phases of these harmonics 
remains constant, we can talk about the phase relationship. Such a set of frequency 
components is called bispectrally organized triplet. Correspondingly, the bicoherence 

 
1 Malakhov, А.N., 1978. [Cumulant Analysis of Random Non-Gaussian Processes and Their 

Transformations]. Moscow, Sovetskoe radio Publ., 376 p. (in Russian). 
2 Botchkov, G.N. and Gorokhov, K.N., 2007. [Polyspectral Analysis and Synthesis of Signals]. 

Nizhny Novgorod: Lobachevsky State University of Nizhny Novgorod, 113 p. (in Russian). 
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function will be close to unity when the signal contains frequencies satisfying 
the relation 

 

𝑓𝑓1 + 𝑓𝑓2 = 𝑓𝑓3.                                                              (1)  
 

If the relation (1) is not satisfied, the bicoherence function tends to zero [6, 7]. 
The use of bispectral and trispectral analysis (especially based on wavelet 

analysis) in hydrometeorology is significantly limited, while second-order spectral 
analysis using a time-frequency or dual-frequency spectrum is often used for 
hydrometeorological data [8]. The use of bicoherent wavelet analysis to detect phase 
relationships in the structure of wind-wave interaction is considered in [9]. However, 
the study did not test for statistical significance. D. Schulte [10] consistently and 
thoroughly considered the identification of nonlinear interactions in an artificially 
generated signal and quasi-biennial oscillation of the zonal wind in the equatorial 
stratosphere. In this work, the spectra of local autobicoherence and biphase were also 
calculated with the estimates of confidence intervals and significance levels. 
Nonlinear changes in climatic processes have occurred many times and have had a 
serious impact on ecological and economic systems [11]. However, such an analysis 
has not previously been used to study short-period internal waves (SIW). 

The purpose of this work is to test the application of auto-bicoherent wavelet 
analysis as a tool for studying nonlinear resonant interactions between frequency 
components in the spectrum of internal waves and identifying the phase relationship 
between harmonics. 

At the first stage, the efficiency of the method used in this work was estimated 
on the data of a model signal in a medium with quadratic nonlinearity in order to 
study in detail the properties of the auto-bicoherent wavelet transform and to clarify 
the method of its application to the analysis of nonstationary signals (see also [10, 
12]), and on the second stage it was based on the results of experimental observations 
of the oscillations of isotherms near the pycnocline obtained in the White Sea Throat 
in August 2012. 

 
Research method 

Details of the method used in this work and its fundamental foundations can be 
found in [6, 7, 10, 12]. Here we give only key concepts and important illustrations. 

By analogy with the Fourier bispectrum, the wavelet mutual autobispectrum has 
the following form [7, 9, 10] 

 

𝐵𝐵𝑥𝑥𝑥𝑥𝑥𝑥𝑊𝑊 (𝑠𝑠1, 𝑠𝑠2) = ∫𝑇𝑇𝑊𝑊𝑥𝑥
∗(𝑠𝑠, 𝑡𝑡)𝑊𝑊𝑥𝑥(𝑠𝑠1, 𝑡𝑡)𝑊𝑊𝑥𝑥(𝑠𝑠2, 𝑡𝑡)𝑑𝑑𝑡𝑡,                                

 

where 
1
𝑠𝑠1

+
1
𝑠𝑠2

=
1
𝑠𝑠

;                                                            (2) 

𝑇𝑇 is time interval; 𝑠𝑠 is a time scale of the independent harmonic component resulting 
from the phase relationship between the harmonics with 𝑠𝑠1 and 𝑠𝑠2 scales; 𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑡𝑡) is 
a wavelet transform of 𝑥𝑥 time series, and the asterisk in 𝑊𝑊𝑥𝑥

∗(𝑠𝑠, 𝑡𝑡) denotes a complex 
conjugation operation. Accordingly, autobicoherence is defined as a normalized 
autobispectrum [6, 10]: 
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𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑥𝑊𝑊 (𝑠𝑠1, 𝑠𝑠2) =
|𝐵𝐵𝑥𝑥𝑥𝑥𝑥𝑥𝑊𝑊 (𝑠𝑠1, 𝑠𝑠2)|2

�∫𝑇𝑇|𝑊𝑊𝑥𝑥(𝑠𝑠1, 𝑡𝑡)𝑊𝑊𝑥𝑥(𝑠𝑠2, 𝑡𝑡)|2𝑑𝑑𝑡𝑡��∫𝑇𝑇|𝑊𝑊𝑥𝑥(𝑠𝑠, 𝑡𝑡)|2𝑑𝑑𝑡𝑡�
,                  

 
where 𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑥𝑊𝑊 (𝑠𝑠1, 𝑠𝑠2) varies within the range from 0 to 1. 

In practice, quadratic nonlinearity leads to the fact that, as a result of 
the interaction of two harmonics of the process, part of the power is released at 
the total and (or) difference frequencies of these components. Wavelet-based 
autobicoherence determines the value of the nonlinear coupling between harmonics, 
where a peak in (𝑠𝑠1, 𝑠𝑠2) plane indicates a statistical relationship between components 
with scales 𝑠𝑠1, 𝑠𝑠2 and 𝑠𝑠. 

Autobispectrum allows you to introduce a function called biphase, which is 
defined as 

 

ψ = 𝑡𝑡𝑡𝑡−1 �
Im(𝐵𝐵𝑥𝑥𝑥𝑥𝑥𝑥𝑊𝑊 (𝑠𝑠1, 𝑠𝑠2))
Re(𝐵𝐵𝑥𝑥𝑥𝑥𝑥𝑥𝑊𝑊 (𝑠𝑠1, 𝑠𝑠2))

� = ϕ1 + ϕ2 − ϕ3.                              

 
Biphase characterizes the variation in signal asymmetry. A value of ψ equal to 

zero indicates a positive asymmetry, equal to 180° – a negative one [12]. In fact, 
if |ψ| > 90°, then the waveform shifts to the region of negative values. In this case, 
the signal is said to have negative distortion. 

In order to demonstrate the properties of the biphase in the same way as it was 
done in [10, 12], we consider a time signal similar to the manifestations of various 
nonlinear SIWs in the form 

 

⎩
⎪
⎨

⎪
⎧𝑋𝑋(𝑡𝑡) = �

1
𝑗𝑗

40

𝑗𝑗=1

cos[0,1𝑗𝑗𝑡𝑡 + γ(𝑗𝑗 − 1)], где γ = 0; ±
π
2

; ±π;

ξ𝑋𝑋(𝑡𝑡) =
𝑋𝑋(𝑡𝑡) − μ𝑋𝑋

σ𝑋𝑋
,

                      (3) 

 
where μ𝑋𝑋 is an arithmetic mean; σ𝑋𝑋 is a standard deviation, and ξ𝑋𝑋(𝑡𝑡) is a normalized 
value of each element of averaged time series 𝑋𝑋(𝑡𝑡). The transformation of the 
averaged time series with its reduction to zero mean and unit variance (normalization) 
is performed in order to obtain a single numerical scale. 

In Fig. 1, a an oscillation visually similar to the manifestation of a group of 
nonlinear internal waves of elevations is given. It can be seen that the deviations 
from the mean in the positive direction of the vertical axis are sharper, but less 
frequent than in the negative direction. In this case, the biphase oscillates around 0°. 
In Fig. 1, d a signal similar to a group of internal waves of depressions, similar to 
those presented in [13]. In this case, the type of biphase is fundamentally different 
from that in Fig. 1, a: it is close to ± 180°. 
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F i g.  1. Normalized time series 𝑋𝑋(𝑡𝑡) and its local biphase ψ for various values of γ in expression (3): 
γ = 0 (a); γ = π 2⁄  (b); γ = −π 2⁄  (c); γ = ±π (d). The biphase was calculated for a triplet with 
the time scales 𝑠𝑠1 = 60, 𝑠𝑠2 = 30 and 𝑠𝑠3 = 20 min 
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The biphase for oscillations with different anterior and rear fronts is represented 
in Fig. 1, b and c. A completely asymmetric time series at γ = ±π/2 in expression 
(3) will have a biphase of 90° or – 90°. 

 
Autobigoherent wavelet analysis of model signal 

In order to study the properties of the auto-bicoherent wavelet transform and 
refine the methodology for its application to the analysis of multifrequency signals, 
for example, similarly to how it was done in [10, 12], we will consider another model 
time signal (similar to an internal eagry) with the addition of white Gaussian noise 
ω(𝑡𝑡): 

 

⎩
⎪
⎨

⎪
⎧𝑌𝑌(𝑡𝑡) = �

1
𝑗𝑗

100

𝑗𝑗=1

cos �0,1𝑗𝑗𝑡𝑡 −
3π
2

(𝑗𝑗 − 1)� + ω(𝑡𝑡) ,                                        

ξ𝑌𝑌(𝑡𝑡) =
𝑌𝑌(𝑡𝑡) − μ𝑌𝑌

σ𝑌𝑌
,

(4) 

 
where μ𝑌𝑌 is mean; σ𝑌𝑌 is a standard deviation and ξ𝑌𝑌(𝑡𝑡) is a normalized value of each 
element of averaged time series 𝑌𝑌(𝑡𝑡). 

For the analysis, the Morlet wavelet was chosen as the parent wavelet, which 
makes it possible to achieve better frequency localization and estimate the value of 
the frequencies of the multicomponent signal with a lower error compared to other 
basic wavelets [6, 14]. 

 
 

 
 

F i g.  2. Results of a continuous wavelet transform of the normalized time series (4) with addition 
of white noise of different intensities (a), and the local wavelet spectrum (b). The dashed line 
separates the region of the edge effects, the bold lines show the 5%-significance level in relation to 
red noise 
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The normalized time sequence 𝑌𝑌(𝑡𝑡) and its local wavelet spectrum 𝑊𝑊(𝑠𝑠, 𝑡𝑡) [13, 

15] for the case of degenerate interaction, when the condition 𝑓𝑓1 = 2𝑓𝑓2 is satisfied, 
are presented in Fig. 2. This process is just formally a three-wave one, since in fact 
two waves are involved in it. The frequencies of them differ by two times. The main 
wave 𝑓𝑓1 lies in a large region of 5% significance at 𝑠𝑠1 = 60 min in the recording 
section between 3 and 16 h, and its second harmonic 𝑓𝑓2 lies in two small regions of 
significance in the same time interval. Note that the occurrence of statistically 
significant values of the spectrum at 𝑠𝑠 = 30 min in the range 𝑡𝑡 = 9 ÷ 16 h is 
accompanied by asymmetry (see Fig. 2, a). For assessing the level of significance, 
the Monte Carlo method was applied, as in [10, 16]. 

To determine whether the oscillations are quadratically nonlinear, an auto-
bicoherence was calculated (Fig. 3, a). From Fig. 3, a it can be seen that the region 
of statistical significance contains a local maximum of auto-bicoherence (marked 
with a red asterisk) on time scales 𝑠𝑠1 = 50 min and 𝑠𝑠2 = 75 min and indicates that 
oscillations with periods of 50 and 75 min are phase-related with the oscillations of 
𝑠𝑠 = 30 min period The variability of the time scales 𝑠𝑠 is partly due to the statistical 
relationship between the three harmonics. In this case, 𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑥𝑊𝑊 (𝑠𝑠1, 𝑠𝑠2) ≈ 0.85, so that 
approximately 85% of the variability at 𝑠𝑠 = 30 min is due to the nonlinear 
interaction between the harmonics, the time scales of which can be determined from 
the location of the maximum on the plane (𝑠𝑠1, 𝑠𝑠2). 

 

 
 

F i g.  3. Auto-bicoherence of the model time series (4) (a); the diagonal cross section of the auto-
biherence spectrum for 𝑠𝑠1 = 𝑠𝑠2 (b). The bold lines contour the 5%-significance areas in relation to red 
noise. The diagonal line divides the spectrum into two symmetric regions. The significance level 
represented by the dashed line was calculated using the Monte Carlo method. The confidence intervals 
were determined by the boot method (bootstrapping) [10, 17] 

 
In Fig. 3, b the result of applying the bootstrapping procedure [10, 17] to 

the diagonal section 𝑠𝑠1 = 𝑠𝑠2 = 𝑠𝑠 of the autobicoherent spectrum 𝑏𝑏𝑥𝑥𝑥𝑥𝑥𝑥𝑊𝑊 (𝑠𝑠1 = 𝑠𝑠2) for 
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the case of degenerate three-wave interaction. The basic principle of bootstrapping 
is to simulate multiple Monte Carlo sampling from an general population using 
the data from an existing sample. A brief overview and detailed description of 
the method can be found in [10, 17–19]. In order to determine the confidence 
intervals for auto-bicoherence, at each time scale, the set of wavelet coefficients was 
divided into overlapping segments (blocks) of equal length. The subsequent merging 
of the blocks leads to a synthetic set of wavelet coefficients at each time scale. 
Iteration of the procedure for 3000 times results in a distribution of bootstrap retries, 
from which a 95% confidence interval can be obtained. The appropriate block length 
was determined by the Monte Carlo method [10, 16, 18] in order to find the largest 
𝑐𝑐 value at which the block length 𝐿𝐿 = 𝑁𝑁𝑐𝑐, where 𝑁𝑁 is the length of the original series, 
would give the widest confidence intervals. It was revealed that the block length 
within the range from 𝑁𝑁0.6 to 𝑁𝑁0.7 is optimal for estimating the confidence intervals 
[10]. 

Fig. 3, b it can be seen that the width of the confidence intervals does not depend 
on the time scale. The confidence interval of 95%, corresponding to the maximum 
of auto-bicoherence with the time scales 𝑠𝑠1 = 𝑠𝑠2 = 60 min, does not cross 5% 
significance limit, and, therefore, this peak is significant. All other peaks were 
considered insignificant. 

Periodic energy exchange between harmonics can significantly affect 
the biphase evolution. Therefore, in order to track the temporal variability of 
the intensity of three-wave interactions, local auto-bicoherence is calculated [10]: 

 

𝑏𝑏𝑡𝑡𝑊𝑊(𝑠𝑠1, 𝑠𝑠2) =
�𝑆𝑆�𝑠𝑠1−1𝐵𝐵𝑡𝑡𝑊𝑊(𝑠𝑠1, 𝑠𝑠2)��

2

𝑆𝑆(𝑠𝑠1−1|𝑊𝑊𝑡𝑡
𝑥𝑥(𝑠𝑠1)𝑊𝑊𝑡𝑡

𝑥𝑥(𝑠𝑠2)|2) ∙ 𝑆𝑆(𝑠𝑠−1|𝑊𝑊𝑡𝑡
𝑥𝑥(𝑠𝑠)|2)

,                      

 
where 𝑆𝑆 is a smoothing operator for Morlet wavelet [10, 15]. 

The local auto-bicoherence spectrum of signal (4) with Gaussian noise for 
a bispectrally organized triplet (𝑠𝑠1 = 50 min, 𝑠𝑠2 = 75 min, 𝑠𝑠 = 30 min) is given in 
Fig. 4, b. 

From Fig. 4 it can be seen that after 7 h the quadratic nonlinearity is strong: it 
leads to the formation of a region of significant local auto-bicoherence extended in 
time. A mutual growth of the 1st and 2nd harmonics is noted, the resonant interaction 
of which with the 3rd leads to an asymmetric signal structure. The biphase in this 
section becomes sharply negative and stable, which indicates constant phase 
dependence between the harmonics. The region of a statistically significant auto-
bicoherence section, exceeding 0.8 (see Fig. 3, a), covers many resonant triplets from 
40–70 min range. In this case, the biphase is invariant for all sets of harmonic pairs. 
The biphase proximity to –90° indicates a complete asymmetry of the signal – a 
sawtooth shape with a sharp leading edge (see Fig. 1, b). High and statistically 
significant estimates of auto-bicoherence (over 0.8) indicate that the 1st and 2nd 
harmonics are related for a certain period of time. 
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F i g.  4. Harmonics of the resonance bispectral triplet (50, 75, 30 min) (a), local auto-bicoherence (b) 
and local biphase (c) of the auto-bicoherence spectrum (Fig. 3, a) at the time scales 50 and 75 min. The 
biphase oscillations differing from 0 ° indicate that the nonlinear interaction led to a waveform with 
asymmetry 

 
Analysis of temperature variations in the White Sea Throat 

The data of scanning measurements in oceanology can be considered as a two-
dimensional picture of variations in hydrophysical fields along the vertical over time, 
which gives a visual representation of the variability of processes. In Fig. 5 sharp 
short-period temperature fluctuations in the thermocline region, which in [20] were 
identified as packets of intense SIWs with nonlinearity signs, are presented. In the 
example, the IWs observations were considered. They were carried out from a 
moored vessel by a CTD-probe in the mode of continuous scanning from the surface 
to the bottom with 1–2 min discreteness at a depth of about 50 m. The observation 
duration of each of the intensive IW packets varied from 40 to 120 min. The packets 
moved in one direction to the southwest, which was revealed from the data of 
synchronous with contact satellite observations, the results of which are presented in 
[21]. At the same time, the occurrence depth and the volumes of warm and cold 
waters in the section plane experienced significant fluctuations in other periods as 
well. Based on these field data, the method of obtaining and the results, the 
processing of which are described and analyzed in detail in [20], the method was 
tested. 

A preliminary analysis of temperature variations was carried out using 
a Savitzky – Golay filter with 180 min window in order to exclude the influence of 
long-period oscillations. Then the numerical series were normalized. 
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F i g.  5. Time series of temperature at depths of 1.5–40 m in the White Sea Throat, taken with a 
time interval of 1 min, and at a depth of 0.5 m in the period from 08:54 to 17:10 (01.08.2012) 

 
In order to search for nonlinear resonance interactions in the IWs spectrum, 

auto-bicoherence was calculated for each horizon. An area with increased 
values of auto-bicoherence was identified (more than 0.8) in the transition layer 
at 5–20 m depths. For example, the auto-bicoherence value at 10 m depth with 
𝑠𝑠1 = 𝑠𝑠2 = 80 min time scales (see Fig. 6, a) indicates on a statistically significant 
nonlinear relationship of the degenerate three-wave interaction type. The region of 
confidence intervals (see Fig. 6, b) does not intersect with 5% boundary of statistical 
significance near 80 min scale. Therefore, we can confidently speak about the 
generation of the second harmonic with 40 min period. 

 

 
 
F i g.  6. Auto-bicoherent wavelet analysis of temperature fluctuations at the depth 10 m: a – auto-
bicoherence; b – diagonal section of the auto-bicoherence spectrum; c – normalized temperature 
pulsations; d – harmonics of the resonance triplet (60, 100, 40 min); e – local auto-bicoherent 
spectrum; f – local biphase spectrum 
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The local auto-bicoherence spectrum of temperature fluctuations with 𝑠𝑠1 =
60 min and 𝑠𝑠2 = 100 min (see Fig. 6, e) time scales indicates when the interaction 
takes place, for example, in the period from 12:00 to 15:45. Asymmetric distortions 
of the signal structure (see Fig. 6, c) in this time interval are the result of the steady-
state resonant interaction between the harmonics of 60, 100, and 40 min. However, 
it is worth noting that the area of the significant auto-bicoherence section, exceeding 
0.8 (see Figure 6, a), covers many sets of harmonic pairs from 60–120 min range, 
participating in three-wave interactions. 

In Fig. 6, f the biphase evolution corresponding to a local peak of auto-
bicoherence with 𝑠𝑠1 = 60 min and 𝑠𝑠2 = 100 min time scales is presented. From 9:00 
to 12:00, the graph 6, f represents unstable phase dependence between 
the components of the resonance triplet. This lack of phase coherence is consistent 
with a low level of auto-bicoherence (see Fig. 6, e) in this region. That is, there is no 
three-wave interaction here. On the contrary, from 12:00 to 15:45 the biphase is 
stable and ranges from –20 to –25°. It can be concluded that the asymmetric structure 
of oscillations here was due to the result of nonlinear interaction between the 
harmonics.   

The quantitative biphase assessment for the transition layer (8–18 m) in 
the period from 12:00 to 15:45, as well as the local auto-bicoherence for other triplets 
from 60–120 min range, is stable. In this layer, the maximum values of auto-
bicoherence are noted, and about 80% of the biphase values for the triplet (60, 100, 
40 min) lie within the range from 0 to –25°. During the three-wave interaction, the 
energy is exchanged between the waves, due to which the amplitudes periodically 
change, as shown, for example, in [22]. In the given example, the biphase is 
preserved, the envelopes of the harmonics vary synchronously with time and their 
amplitudes are proportional (Fig. 6, d, e), respectively, according to the conclusions 
of [23], the periodic energy exchange is not observed in our case. The absence of a 
periodic change in the biphase sign within the range under consideration indicates a 
weak influence of dispersion effects on the SIWs structure. This is also confirmed 
by the estimates of the dispersion relation for internal waves, made from the data of 
hydrological observations in [24]. 

In addition, in the considered example of field data with the biphase negative 
values, the mode of complete asymmetry of the signal, as, for example, in Fig. 1, b 
is not observed. Therefore, the IWs, despite their nonlinear character, most likely 
were not in the stage of local instability or breaking and could propagate far enough. 
This is indirectly confirmed by the results of [25], in which it was demonstrated that 
IWs packets, arising regularly (each tidal cycle) in the southern part of the White Sea 
Throat, move across the entire sea in a southwestern direction, transforming during 
propagation, and finally disintegrate only after 200 km in the shallow water zone 
northwards of the Solovetsky archipelago. 

Manifestations of nonlinear transformation and breaking processes were 
considered in [23, 26], in which the influence of wave breaking on the biphase spatial 
variability was studied in relation to surface waves in the coastal zone. According to 
[27, 28], the surface waves near the coast before the breaking take a sawtooth shape 
and the biphase in them is close to −π/2. An example of IWs at the breaking stage 
is a model signal with Gaussian noise (see Fig. 2, a), where, from 9 h, the biphase 
becomes close to −π/2, and the signal takes a sawtooth shape (see Fig. 4, c). 
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However, an assessment of the processes of IWs local instability and breaking based 
on auto-bicoherent wavelet analysis has not been described in the literature. 
Therefore, it seems appropriate to continue further consideration of this issue, which 
is important for automated processing of data on thermocline oscillations. 

 
Conclusion 

This paper describes the application of a technique based on bispectral wavelet 
analysis, which provides the detection of nonlinear interactions, to the study of 
the characteristics of the internal waves. 

On the model and field examples, the possibility of higher-order statistics 
application, based on wavelet analysis, to study the processes of nonlinear 
transformation of internal waves is presented. 

Auto-bicoherent wavelet analysis was applied for the first time to detect 
the nonlinear interactions of internal waves observed in temperature time series in 
the White Sea Throat. 

Analysis of temperature fluctuations provided to reveal the relationship between 
harmonics in a certain period of time. It is shown that the relationship between 
frequency components was accompanied by the distortion of asymmetric signal. 

High statistically significant values of auto-bicoherence (more than 0.9) indicate 
that harmonics within the range of 60–120 min are the waves coupled due to three-
wave interactions. The biphase value during the period of three-wave interaction 
intensification was predominantly within the range from –20 to –25°. The absence 
of a periodic change in the sign of the biphase confirms the insignificant influence 
of the dispersion effects observed in the southern part of the White Sea Throat on the 
structure of the SIWs signal. 

Summarizing the work results, it should be noted that the widespread use of 
polyspectral analysis methods will significantly expand the understanding of 
hydrophysical processes associated with the internal waves in the ocean. 
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