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Purpose. The Lofoten Basin is one of the most energetic zones of the World Ocean characterized by 
high activity of mesoscale eddies. The study is aimed at analyzing different components of general 
energy in the basin, namely the mean kinetic and vortex kinetic energy calculated using the integral of 
the volume of available potential and kinetic energy of the Lofoten Vortex, as well as variability of 
these characteristics. 
Methods and Results. GLORYS12V1 reanalysis data for the period 2010–2018 were used. The mean 
kinetic energy and the eddy kinetic one were analyzed; and as for the Lofoten Vortex, its volume 
available potential and kinetic energy was studied. Mesoscale activity of eddies in winter is higher than 
in summer. Evolution of the available potential energy and kinetic energy of the Lofoten Vortex up to 
the 1000 m horizon was studied. It is shown that the vortex available potential energy exceeds the 
kinetic one by an order of magnitude, and there is a positive trend with the coefficient 0,23⋅1015  J/year. 
It was found that in the Lofoten Basin, the intermediate layer from 600 to 900 m made the largest 
contribution to the potential energy, whereas the 0–400 m layer – to kinetic energy. The conversion 
rates of the mean kinetic energy into the vortex kinetic one, and the mean available potential energy 
into the vortex available potential one (baroclinic and barotropic instability) were analyzed. It is shown 
that the first type of transformation dominates in summer, while the second one is characterized by its 
increase in winter. 
Conclusions. The vertical profile shows that kinetic energy of eddies in winter is higher than in summer. 
The available potential energy of a vortex is by an order of magnitude greater than the kinetic energy. 
Increase in the available potential energy is confirmed by a significant positive trend and by decrease 
of the vortex Burger number. The graphs of the barotropic instability conversion rate demonstrate the 
multidirectional flows in the vortex zone with the dipole structure observed in a winter period, and the 
tripole one – in summer. The barotropic instability highest intensity is observed in summer. The 
baroclinic instability is characterized by intensification of the regime in winter that is associated with 
weakening of stratification in this period owing to winter convection. 
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1. Introduction
It is generally known that climate change leads to a restructuring of the entire 

hydrodynamic ocean – atmosphere system and is manifested, among other things, 
by the strengthening of the winds and an increase in the mesoscale eddy activity of 
the ocean. The greatest changes are taking place in dynamically active regions. 

The Lofoten Basin (LB), located in the central part of the Norwegian Sea, is 
rightfully called the hot spot of the North Atlantic. The LB is characterized by local 
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maxima of the dispersion of the ocean level and the kinetic energy of mesoscale 
eddies [1–3]. Barotropic and baroclinic instabilities of the Norwegian Current 
generate many mesoscale eddies, which, breaking away from the current jet, move 
along the basin water area. The LB is not only an area of the increased mesoscale 
dynamics, but also a transit region through which warm and salty Atlantic waters 
enter the Arctic Ocean. 

The LB is a topographically separate formation, as it is bounded by the Mona 
Ridge in the northwest and the continental slope and the Voring Plateau in the south 
and east (Fig. 1). The basin is surrounded by branches of the Norwegian Current: 
The Norwegian Atlantic Slope Current (NwASC) in its eastern part, the Norwegian 
Coastal Current (NCC), which extends along the Scandinavian continental slope, and 
the Norwegian Atlantic Front Current (NwAFC) in the west [1]. 

F i g.  1. Area under study. The white circle denotes the location of the anticyclonic Lofoten Vortex 
(r = 80 km). Arrows indicate the main currents: NwASC, NCC, NwAFC  

LB is characterized by the intense heat loss in winter (∼ 80 W/m2) [4, 5] and 
significant depths of the upper quasi-homogeneous layer (0–1000 m) during 
the periods of deep convection [6]. The deepening of isosteric surfaces due to 
the topographic features of the basin and eddy advection contribute to the long-term 
presence of Atlantic waters in the LB, turning it into a huge heat reservoir, which is 
important for the thermodynamic processes of the Arctic basin [7]. 

In the basin center, a quasi-permanent anticyclonic Lofoten vortex fed 
by mesoscale anticyclones breaking away from the Norwegian Current [8–13] 
is located. The core of the Lofoten vortex is characterized by extreme values 
of relative vorticity, approximately equal to −0.5 f, but sometimes reaching 
−0.9 f (f = 1.37⋅10–4 – is the Coriolis parameter at 70° N), close to the limiting 
theoretical values of f for anticyclones [10]. Orbital velocities reach 0.7–0.8 m⋅s–1 
[10, 14]. 

In this work, the available eddy potential and kinetic energy of the Lofoten Basin 
is analyzed. Energy in the oceans is mainly represented by Mean Kinetic Energy 
(MKE), Eddy Kinetic Energy (EKE), Mean available Potential Energy (MPE) and 
eddy Available Potential Energy (APE). According to [15], APE is the difference 
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between the total potential energy of a liquid at the moment and the potential energy 
of a liquid of the same mass that could exist in a similar basin after the transition to 
a stable reference state, when the isosteric and isobaric surfaces are at the same level. 
In other words, APE is that part of the potential energy of the system that can be 
converted into kinetic energy as a result of reversible adiabatic processes. 

The total kinetic energy is usually divided into MKE and EKE. EKE is 
commonly used to analyze the temporal and spatial mesoscale variability of 
the ocean [16, 17]. 

In the LB, as in the entire World Ocean, some types of energy are transferred 
into others. Thus, the work of the buoyancy force is the source of the large-scale 
circulation APE. APE is capable of generating mesoscale eddies and, accordingly, 
increasing the eddy component of kinetic energy [18]. As a result, in dynamically 
active regions, as well as in regions of large-scale currents, transient processes 
dominate, with EKE exceeding MKE by an order of magnitude [18, 19]. 

Analyzing the relationship between eddy activity and isopycnic gradients, 
the authors of [20] showed that mesoscale eddies are generated by the instability in 
boundary currents and frontal zones of the Norwegian Sea. The authors of [10], 
based on the data of field measurements, found that in the core of the Lofoten Basin 
Eddy, the APE and EKE values are 3.4 · 1014 J and 5.9 · 1014 J, respectively. In this 
case, the average eddy Burger number EBu  [21] is 1.75 ± 0.01. Note that these values 
are 10–20 times higher than the estimates obtained earlier for the Lofoten Basin 
Eddy [22], as well as for another mesoscale eddy – the anticyclone in the North 
Atlantic [23]. It should be noted that EKE and APE values below 1500 m horizon 
hardly increase, which is due to insignificant gradients of density stratification and 
low velocities [14]. 

The purpose of this work is to analyze the various components of the total 
energy in the LB: the average kinetic and eddy kinetic energy calculated using 
the integral over the volume of the available potential and kinetic energy of 
the Lofoten Basin Eddy, as well as the variability of these characteristics. We 
analyze the conversion (redistribution) of energy between the components during the 
period of maximum development of deep winter convection (January – March) and 
compare the obtained estimates with similar estimates for the summer period (June – 
August). A deeper understanding of these processes will provide the improvement 
of the understanding of the basin mesoscale dynamics and the role of energy in the 
regeneration of the quasi-permanent Lofoten Basin Eddy. 

2. Data
The daily data on temperature, salinity, u- and v-components of velocities 

obtained from the GLORYS12V1 reanalysis for 2010–2018 were used in the work. 
The data are available on the CMEMS (Copernicus Marine Environment Monitoring 
Service) portal. The GLORYS12V1 product is an eddy-resolving reanalysis of the 
World Ocean with 1/12 ° spatial resolution at 50 horizons. The reanalysis is based 
on the NEMO model with ECMWF ERA-Interim forcing. GLORYS12V1 data co-
assimilates satellite altimetry data, sea surface temperature, sea ice concentration, 
and in situ temperature and salinity vertical profiles. Observations are assimilated 
using the Kalman filter. Temporal discreteness of data is 1 day. 

PHYSICAL OCEANOGRAPHY   VOL. 28   ISS. 3   (2021) 296 



3. Methods
In order to calculate MKE and EKE per unit area for unit mass, the following 

formulas were used [2, 24]: 
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Averaging period is 2010–2018. 
For the region of the Lofoten Basin Eddy bounded by a radius of R = 80 km 

(white circle in Fig. 1), one can calculate the volumetric values of the Available 
Potential Energy ( )VAPE  and Eddy Kinetic Energy (KE) (by volumetric values we
mean the values calculated using the integral over the volume) by the following 
formulas [23, 25]: 
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where H is the maximum depth (in the calculations assumed to be equal to 1000 m); 

refρ  is an average potential density profile outside the eddy region (r > 80 km).
Formulas (2) are written under the assumption that the eddy is radially symmetric. 
The eddy Burger number was calculated by the formula [21, 23] 

BuE = KE / APEV . 

It is known that the flux of disturbances can extract energy from the average 
flux through the instabilities [26]. In order to study the contribution of various 
sources to eddy energy, the indicators of the energy conversion rate are introduced: 
BC and BT. BC characterizes the rate of MPE conversion into APE, which is one of 
the sources of mesoscale eddies, while BT characterizes the rate of MKE conversion 
into EKE. In other words, BT is the coefficient of barotropic transformation, which, 
if positive, transforms the energy of average horizontal shears and transfers it to the 
eddy field; BC is the baroclinic transformation coefficient, which, if positive, 
redistributes energy from the MPE field (i.e., horizontal density gradients) into the 
eddy field. Thus, the source of EKE is the baroclinic instability of fluxes (BC), in 
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which the generation of EKE occurs due to MPE (MPE  АPE  EKE) and 
barotropic instability (BT) formed due to MKE: MKE  EKE [27]. 

We used the following formulas for the calculations [27–29]: 
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where g is a free fall acceleration; 0ρ   is a background density of the seawater; N is 
a buoyancy frequency. 

4. Results
Now we are to consider the kinetic energy spatial distribution in the basin 

(Fig. 2). The energy is calculated by the formulas (1). In Fig. 2, a it can be seen that 
the maximum EKE values are observed in the region of the Lofoten Basin Eddy core 
location (up to 250 cm2⋅s–2). In addition, kinetic energy maxima (up to 100–
130 cm2⋅s–2) are noted in the LB northwestern and eastern parts and on 
the continental slope of Norway, while for the rest of the water area the EKE values 
do not exceed 50 cm2⋅s–2. 

The MKE, in comparison with the EKE, is characterized by lower values (Fig. 2, 
b). Although the maximum MKE values were also recorded in the area of the Lofoten 
Basin Eddy, they are lower than the corresponding EKE values. Note that if the EKE 
maxima (Fig. 2, a) correspond to the central part of the Lofoten Basin Eddy (the 
center is located approximately at 69.8° N, 4.8° E), then in the MKE distribution 
(Fig. 2 , b) this region corresponds to the minimum values close to zero, and the 
increased MKE values are located at the eddy periphery. Another feature is the 
topography study of the increased MKE values: in Fig. 2, b it can be seen that the 
elongated regions of increased values are located along the isobaths. Obviously, this 
dependence repeats the location features of the main jets of the Norwegian Slope and 
Norwegian Frontal currents (see Fig. 1). 

The difference between the EKE and MKE is positive over most of the LB, with 
the largest values recorded in the core of the Lofoten Basin Eddy, as well as in the 
central and eastern parts of the basin (Fig. 2, c). While at the periphery of the Lofoten 
Basin Eddy, which is characterized by high MKE values, the difference is negative, 
in the area of the Voring plateau and in the western part of the LB it is close to zero 
(see also [30]). 
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F i g.  2. Spatial distribution at the 500 m horizon: a – EKE; b – MKE; c – difference between EKE and 
MKE. Averaging is for the period 2010–2018. Black lines show the 1000, 2000 and 3000 m isobaths 

Vertical distribution of these characteristics is shown in Fig. 3. The values were 
averaged separately for the winter and summer periods: January – March (Fig. 3, a) 
and June – August (Fig. 3, b). It was found that the EKE dominates at all depths 
down to 1000 m. This feature is most clearly observed in the intermediate layer from 
100 to 500 m, where the difference is the greatest. Seasonal variability, leading to an 
increase in kinetic energy in winter compared to summer, is also noted. 
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F i g.  3. Vertical profiles of the long-term values of EKE (blue line), MKE (red line) and their 
differences (EKE – MKE) (yellow line): a – January – March (JFM); b – June – August (JJA) 

F i g.  4. Time variation of (APEV) (blue line) and (KE) (red line), and linear trend of APEV (blue dotted 
line) with the confidence intervals (blue dotted lines) (а); evolution of the vortex Burger number (b) 
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The evolution of the volumetric values of the Available Potential Energy and 
kinetic energy for the Lofoten Basin Eddy is shown in Fig. 4, a, and the evolution of 
the Burger number is shown in Fig. 4, b. It can be seen that the evolution is 
accompanied by a positive significant trend, while this trend is absent for KE. 
The increase in APEV values is possibly due to the deepening of isosteric surfaces in 
the LB in connection with the ongoing climatic processes in the North Atlantic (see 
[7]). 

The obtained estimates of APEV and KE are generally quite similar to the values 
presented in earlier studies [22, 23]. Thus, the Lofoten Basin Eddy is characterized 
by a predominance APEV (from 0.1⋅1015 to 5.5⋅1015J) over KE (from 0.2⋅1014 to 
3.0⋅1014 J) (Fig. 4, a), which leads to BuE values equal to ∼ 0.02–0.13 (Fig. 4, b). In 
addition, a significant positive trend for APEV equal to 0.23⋅1015 J/year (Fig. 4, a), 
which is reflected in a decrease in the Burger’s vortex number (Fig. 4, b), was 
recorded. 

In Fig. 5 the vertical profiles of APEV, KE and BuE, plotted with weekly 
averaging (thin lines), as well as averaged over 2010–2018 values (thick lines), are 
represented. It can be seen that APEV also has negative values at the depths from 0 
to 400 m (Fig. 5, a). This indicates that the water masses in the Lofoten Basin Eddy 
are denser in comparison with the surrounding waters outside the eddy (Fig. 5, a). 
The fastest variation in the APEV is recorded at intermediate depths of 200–800 m. 
Thus, the maximum average value was recorded at the 700 m horizon, which 
demonstrates the presence of the highest density gradients here, due to 
the displacement of isopycnic lines. The maximum APEV values are observed in the 
intermediate layer from 600 to 900 m. 

On the vertical profiles of KE, the values are positive and are characterized by 
a gradual decrease in values with depth (Fig. 5, b). The largest individual maximum 
values are also recorded in the surface layer down to 300 m depth. Further, at the 
depths from 400 m to 750 m, the KE decreases on individual profiles and its average 
values. 

F i g.  5.   Vertical  profiles (thin lines)  of  APEV (a), KE (b) and  the vortex Burger number BuE (c) in 
the Lofoten Vortex. The average of each value is indicated by a thick line 
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In Fig. 5, c the vertical variability of Burger number BuE calculated for 
individual profiles and in averaging. It can be seen that the extreme values for 
individual profiles (exceeding 1.75 in modulus) were recorded in the upper layer of 
the sea from the surface and down to 500 m. The maximum gradients are typical for 
the core of the Lofoten Basin Eddy (300–400 m). 

The BT and BC energy conversion graphs, which characterize the conversion 
between different components of the total energy, are of the greatest interest. In Fig. 
6 the rate of converting the MKE to EKE is represented. Positive values indicate the 
transition of the Average Kinetic Energy into the eddy one, while negative values 
indicate the energy flux in the opposite direction. It can be seen that the most 
energetic transformation zones are still the Lofoten Basin Eddy area and the core of 
the Norwegian Slope Current. 

F i g.  6. Spatial distribution of BT (conversion of MKE into EKE) integrated in the upper 500 m sea 
layer for the periods: a – January – March (JFM); b – June – August (JJA). Black lines show the 1000, 
2000 and 3000 m isobaths 

Note that in the area where the Lofoten Basin Eddy is located, multidirectional 
fluxes are observed in different parts of the eddy. The alternation of red and blue 
regions in the Lofoten Basin Eddy zone demonstrates an active return of the Eddy 
Kinetic Energy to the mean field, and vice versa. In winter, in the northwestern part 
of the eddy, an area of negative values (blue), and on the opposite side – positive 
(red) is observed. 

The Lofoten Basin Eddy core is characterized by positive values of the MKE 
and the energy flux from its mean field in the EKE. Obviously, this fact characterizes 
the eddy stability and its constant presence in this region. 

In the summer period, two areas of negative values, located in the northwestern 
and southeastern periphery of the eddy, where the transformation of EKE into MKE 
takes place, are observed. In [31], a similar alternation of regions of positive and 
negative vertical velocities in the Lofoten Basin Eddy is analyzed. The authors 
associate this feature with the influence of the Norwegian Slope Current, which 
propagates in the eddy water area northwestwards. It is possible that the symmetrical 
arrangement of the regions of multidirectional energy fluxes is also due to the flux 
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influence. Note also that energy conversion is more intense in the summer than in 
the winter months. 

Another energetic region in Fig. 6 is an area of the Norwegian Slope Current, 
where energy is also redistributed from one form to another. The area in which 
the Norwegian Slope Current core is located is characterized by negative BT values 
in its western periphery and positive in the eastern one. A detailed analysis of this 
phenomenon is presented in [32]. 

Separate local extrema of BT are also observed in the regions of the Voring 
plateau and the northwestern part of the basin, but their values are significantly 
lower. 

F i g.  7. Spatial distribution of BC (conversion of MPE into APE) integrated in the upper 500 m sea 
layer for the periods: a – January – March (JFM); b – June – August (JJA). Black lines show the 1000, 
2000 and 3000 m isobaths  

In Fig. 7 shows the rate of MPE conversion into APE is represented. Positive 
BC values indicate the conversion from MPE to APE, while negative values indicate 
the conversion from APE to MPE. Note that in winter, the BC values are more than 
four times higher than the corresponding values for the summer period. Obviously, 
this is primarily due to the weak stratification of the upper layers and low N2 values 
in winter due to the formation of a thick quasi-homogeneous layer.  

The most active transformation zones are the central and eastern LB parts of the, 
as well as the continental slope of Norway. It is surprising that these processes are 
very little expressed in the adjacent area of the Norwegian Basin (Fig. 7). It should 
be noted that in the winter period in the LB water area, the areas with a predominance 
of positive BC values are formed, and on the continental slope of Norway, an area 
of negative BC values is formed along the isobaths, while in summer, a little to the 
north, the energy is transformed in the opposite direction with an increase in APE. 
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5. Conclusions
Based on GLORYS12V1 data for 2010–2018, the mean and eddy kinetic 

energies were analyzed, as well as the available volumetric potential and volumetric 
kinetic energy of a quasi-constant eddy. For the first time, vertical profiles of 
volumetric values of APEV and KE were obtained in the Lofoten Basin Eddy. The 
work presents spatial distributions, as well as vertical profiles of the considered 
characteristics. Estimates of the vortex Burger number are obtained. 

It is demonstrated that the Lofoten Basin Eddy core is characterized by increased 
(relative to the average values) values of the eddy kinetic energy. However, at the 
eddy periphery, on the contrary, the average values of kinetic energy dominate. 

The kinetic energy vertical profiles demonstrate an increase in the mesoscale 
activity of eddies in winter compared to summer, while the eddy component still 
dominates. 

The evolution of the Lofoten Basin Eddy available potential and kinetic energy, 
calculated in the layer from the surface down to 1000 m, is studied. It is shown that 
the available potential energy of the eddy is an order of magnitude higher than the 
kinetic energy, and demonstrates a positive trend. An increase in the available 
potential energy during 2010–2018 is confirmed by a significant trend with 
a coefficient of 0.23 · 1015 J/year, which reflects the deepening of the isopycnic 
surfaces, which, in turn, may be associated with climatic changes in the North 
Atlantic. An increase in the values of the available potential energy is accompanied 
by a decrease in the Burger’s vortex number. 

On the vertical profiles of the Lofoten Basin Eddy available potential energy, 
one can see negative values in the surface layer down to 300 m depth. The maximum 
APEV values are recorded at 700 m horizon, while the largest contribution to the 
potential energy is made by the intermediate layer from 600 to 900 m. KE is 
characterized by the distribution of maximum values in a quasi-homogeneous layer 
from the surface down to 300 m, but further with an increase in depth, KE starts to 
decrease slowly, accelerating the decline after 750 m horizon. Thus, the layer from 
0 to 400 m makes the greatest contribution to the kinetic energy in the LB. 

The vertical profile of the vortex number BuE demonstrates the inhomogeneity 
of values in the layer from 0 to 400 m, caused by negative and close to zero APEV 
values, as well as an increase in KE in the surface layer. The extreme Burger values 
for individual profiles reach 1.75. 

 The BT conversion rate graphs (barotropic instability: MKE  EKE) indicate 
the presence of multidirectional fluxes in the eddy zone. Note that a dipole structure 
is observed in winter and a tripole structure in summer, and in the Lofoten Basin 
Eddy zone these fluxes are more intense in summer. The area where the Norwegian 
Slope Current core is located is characterized by negative BT in the west and positive 
in the east in both seasons.  

In contrast to the BT, the BC (baroclinic instability: MPE  АPE) is 
characterized by an increase in fluxes in winter, which is related to a stratification 
weakening during this period due to winter convection. During this period, the areas 
with a predominance of positive BC values are formed in the LB water area. On the 
continental slope of Norway, an area of negative BC values stretched along the 
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isobaths is formed, and in the summer period a transformation of energy in the 
opposite direction takes place a little further north. In winter, the baroclinic 
instability dominates, the ВС values are 2–3 times higher than ВТ maximum values, 
and in winter baroclinic instability is observed throughout the entire water area of 
the basin, while increased BT values are characteristic only for the Lofoten Basin 
Eddy region and in magnitude they are significantly inferior to the BC values. 
However, in summer the barotropic fluxes and BT values exceed the corresponding 
BC values. 

Materials and some figures were published in abridged form in the presentation 
of reports at conferences 1. 

1 Travkin, V.S. and Belonenko, Т.V., 2020. [Kinetic and Potential Energy of the Lofoten Basin 
Eddies According to Satellite and In Situ Data]. In: IKI RAS, 2020. [Materials of the 18th All-Russian 
Open Conference "Modern Problems of Remote Sensing of the Earth from Space"]. Moscow: IKI RAN, 
p. 182. doi:10.21046/18DZZconf-2020a; Travkin, V.S. and Belonenko, Т.V., 2021. [Kinetic and
Potential Energy of Currents in the Lofoten Basin Area]. In: IO RAS, 2021. [Materials of the VI All-
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