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Purpose. The paper is aimed at investigating the momentum vertical transfer by inertia-gravity 
internal waves on a two-dimensional flow with a vertical shear of velocity, and also at studying 
the Stokes drift of liquid particles and the mean current effect on it. 
Methods and Results. Free internal waves in an infinite basin of constant depth are considered in 
the Boussinesq approximation with the regard for the Earth rotation. Two components of the mean 
current velocity depend on the vertical coordinate. The equation for the vertical velocity amplitude 
has complex coefficients; therefore the eigenfunction and the wave frequency are complex. 
The corresponding boundary value problem is solved numerically by the implicit Adams scheme of 
the third order of accuracy. The wave frequency at a fixed wavenumber was found by the shooting 
method. It was determined that the frequency imaginary part was small and could be either negative 
or positive depending on a wave number and a mode number. Thus, both weak attenuation and weak 
amplification of an internal wave are possible. The vertical wave momentum fluxes are nonzero and 
can exceed the corresponding turbulent fluxes. The Stokes drift velocity, transverse to the wave 
direction, is nonzero and less than the longitudinal velocity. The vertical component of the Stokes 
drift velocity is also nonzero and four orders of magnitude less than the longitudinal component. 
The signs of the vertical component of the Stokes drift velocity for the waves with the frequencies 10 
and 16 cph are opposite, since the signs of their frequency imaginary parts are different; 
and the vertical component of the Stokes drift velocity is proportional to the wave frequency 
imaginary part. 
Conclusions. The vertical momentum wave flux of inertia-gravity internal waves differs from zero in 
the presence of the current whose velocity component, transverse to the wave propagation direction, 
depends on the vertical coordinate. The component of the Stokes drift velocity, transverse to the wave 
propagation direction, is nonzero and less than the longitudinal one. The vertical component of 
the Stokes drift velocity is also nonzero and can contribute to formation of the vertical fine structure. 
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The problem of vertical exchange remains relevant at the present time, since it 

is the vertical exchange that ensures the oxygen supply to the deep layers of the sea 
and the removal of organic material from the deep layers. This is extremely 
important for the functioning of the ecosystem. According to existing concepts, 
vertical exchange is provided by small-scale turbulence [1–4]. However, in 
the pycnocline region turbulence is strongly suppressed by buoyancy forces. 
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On the other hand, the pycnocline is a waveguide for internal waves, and it seems 
relevant to study the contribution of internal waves to vertical exchange. Internal 
waves propagate mainly by wave trains localized in space [5]. Nonlinear effects 
during the propagation of trains of internal waves are manifested in the generation 
of currents averaged on the wave scale [6, 7]. The vertical velocity component of 
this current has different signs at the leading and trailing edges of the train, and 
there is no integral vertical transfer. After the wave train passage, the unperturbed 
stratification profile is reconstructed. A number of works [8, 9] are devoted to 
the study of the vertical transfer of momentum by internal waves. Vertical wave 
momentum fluxes are nonzero with allowance for turbulent viscosity and diffusion 
[8]. In this case, the wave attenuates [10, 11] and the phase shift between 
the oscillations of vertical and horizontal velocity differs from 2π . For inertia-
gravity internal waves in the presence of a current velocity component transverse to 
the direction of wave propagation, which depends on the vertical coordinate, 
the vertical wave momentum flux is nonzero even if turbulent viscosity and 
diffusion are not taken into account. The point is that the boundary value problem 
for the amplitude of the vertical velocity of internal waves fixed mode has 
complex coefficients. This problem was solved analytically in [9] at a constant 
Brunt – Väisälä frequency and a linear current velocity profile. In this case, 
the wave propagated perpendicular to the flow. It was obtained that the solution of 
the boundary value problem (eigenfunction of internal waves) is complex, and 
the wave frequency is real. When internal waves propagate at an angle to a plane-
parallel flow with no regard to the Earth’s rotation, the wave frequency is real and 
the eigenfunction is real, since the equation for the vertical velocity amplitude has 
real coefficients [12, 13]. It will be obtained below that in a two-dimensional 
stratified current, taking into account the Earth's rotation, the wave frequency is 
complex, and the imaginary part of the frequency can be both negative and 
positive, i.e. both weak attenuation and weak amplification of the wave are 
possible. In this case, the vertical wave momentum flux and the vertical component 
of the Stokes drift velocity are nonzero. In [9], the vertical wave momentum flux is 
not zero, but the vertical component of the Stokes drift velocity is zero, since 
the wave frequency is real.  

 
Statement of the problem. In the Boussinesq approximation, free internal 

waves are considered taking into account the Earth’s rotation in an infinite basin of 
constant depth on a two-dimensional current, two horizontal velocity components 

( ) ( )zVzU 00 ,  of which depend on the vertical coordinate. In the linear 
approximation, the boundary value problem for the amplitude of internal waves 
vertical velocity is numerically solved, and the complex frequency of internal 
waves fixed mode at a constant wavenumber is found. In the second order in wave 
amplitude, the Stokes drift velocity of liquid particles and vertical wave momentum 
fluxes are found. 

Hydrodynamics equations for wave disturbances have the form 
 

0

0

1
ρ (0)

dUDu Pfv w
Dt dz x

∂
− + = −

∂
,                              (1) 
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∂
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∂
= − −

∂
,                                     (3) 

 

0ρρ dD w
Dt dz

= − ,                                                (4) 
 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

,                                         (5) 

 

where u, v, w are two horizontal and vertical components of current wave velocity, 
respectively; ρ, P are wave disturbances of density and pressure; ( )z0ρ  is 
an average density profile; x, y, z are two horizontal and one vertical coordinates, z 
axis is directed upwards; f is the Coriolis parameter; ( ) ( )zVzU 00 ,  are two velocity 

components of mean current; Action of 
Dt
D  operator is expanded by the formula 

0 0( ) ( )D u U v V w
Dt t x y z

∂ ∂ ∂ ∂
= + + + + +
∂ ∂ ∂ ∂

. Using geostrophic relations from [14], 

we are to estimate the horizontal scales of mean density variation: 
0 0

0
ρρ / / maxx

VL g f
x z

∂  ∂ 
= =  ∂ ∂ 

, 0 0
0

ρρ / / maxy
UL g f

y z
∂  ∂ 

= =  ∂ ∂ 
.  

 

 
 

F i g.  1. Vertical profiles of the current velocity components 00, VU  

 
The vertical profiles of the current velocity components are demonstrated in 

Fig. 1. The maximum values of the modulus of vertical gradients of current 
velocity components 00 ,VU are 0.067 and 0.011 l/s, respectively. The horizontal 
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scales of density variation are equal to 68.283 10xL = ⋅ m, 61.398 10yL = ⋅  m, 
respectively, and they are much larger than the wavelength, therefore, 
the horizontal density variation is neglected. 

The boundary condition on the sea surface z = 0 is the “rigid lid” condition that 
filters internal waves from the surface waves [15]: 

 

(0) 0.w =                                                             (6) 
 

The boundary condition at the bottom is impermeability condition: 
 

( ) 0,w H− =                                                         (7) 
 

where H  is a sea depth. 
 
Linear approximation. We seek solutions of linear approximation in 

the following form:  

θ
1 10 ( ) e c.c.iu u z A= + ,     θ

1 10 ( ) e c.c.iv v z A= + ,        θ
1 10 ( ) e c.c.iw w z A= + , 

θ
1 10 ( ) e c.c.iP P z A= + ,   θ

1 10ρ ρ ( ) e c.c.iz A= + ,                          
(8)

 
 

where c.c. are complex conjugate terms; A is an amplitude factor; θ is a wave 
phase ( θ / , θ / ωx k t∂ ∂ = ∂ ∂ = − , k  is a horizontal wavenumber, ω is a wave 
frequency). It is assumed that the wave propagates along x axis. 

After substituting (8) into system (1) – (5), the amplitude functions 
10 10 10 10, , ρ ,u v P are linked with 10w : 

 

10
10

dwiu
k dz

= ,                  0ω k UΩ = − ⋅ ,                                   (9) 
 

10 10 0 0 10
10 10

0

( )
ρ (0)

P dw dU dV dwi f fw i w
k k dz dz dz k dz

Ω = + + − Ω 
,                  (10)  

 

0
10 10

ρρ ,di w
dz

= −
Ω

                  10 0
10 10

1 .dw dVfv iw
k dz dz

 = − Ω  
            (11) 

 

Function 10w  satisfies the equation 
 

20 0
2

10 10
2 2 2 2 2

2 2
2 2 0 0 0 0

2 2

10 2 2 2 2

( )

( )
0,

( )

dV dUif fd w dwdz dzk
dz f f dz

d U d V dU dVk N if ifk
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where 2 0

0

ρ
ρ (0)

dgN
dz

= −  is a square of Brunt – Väisälä frequency. 

 

Boundary conditions for 10w : 
 

at 0z =  ,010 =w                                                    (13) 
 

at z H= −  .010 =w                                                (14) 
  

Boundary value problem (12) – (14) was solved analytically in [9] 
at a constant Brunt – Väisälä frequency and a linear velocity profile of a plane-
parallel mean current. The wave propagated perpendicular to the flow. It was found 
that the eigenfunction – the solution to this boundary value problem – is complex, 
and the wave frequency is real. Below, while carrying out numerical calculations, 
it will be shown that the wave frequency is complex in a two-dimensional current. 

In [16], equation (12) was solved by the perturbation method by expanding 
the solution in a series in a small parameter *

0 *ε /( ω )V H= , where *
0V is 

characteristic value of current velocity and *ω  is the characteristic wave 
frequency. However, this parameter is not always small and is the applicability of 
the method is limited. Therefore, in the present work, the implicit Adams scheme 
of the third order of accuracy is used for the numerical solution of equation (12) for 
real profiles of Brunt – Väisälä frequency and current velocity. 

Boundary value problem (12) – (14) was solved analytically in [12, 13, 17] for 
a plane-parallel flux with a linear current velocity profile at f = 0, N = const in case 
when the wave propagates at an arbitrary angle to the flow. A dispersion equation 
containing modified Bessel functions is obtained. In [17], only the first three terms 
were left in the expansion of the Bessel functions in a series; therefore, 
the imaginary part of the phase velocity is greater than zero even at the Richarson 

number ,
4
1Ri 2

2

>









=

dz
dU
N which contradicts the Miles criterion [18, 19] of a plane-

parallel flow hydrodynamic stability. However, in [12, 13], the same dispersion 
equation was solved numerically and asymptotically, and no contradiction to Miles 
criterion of hydrodynamic stability was found. In [20], for an arbitrary plane-
parallel flow with a continuous velocity profile at constN = , no contradiction to 
the Miles criterion was also revealed. 

It is of interest to compare the numerical solution of boundary value problem 
(12) – (14) according to the implicit Adams scheme of the third order of accuracy 
with the analytical solution [9] for a plane-parallel flow with a linear flow velocity 
profile at constN = when the wave propagates perpendicular to the flow. For 
the first mode 15-minute internal waves with ω 0.00698132= rad/s frequency, 
a numerical calculation provides the wavenumber value 0.0418831513k = rad/m. 
If this value is substituted into the formula for the frequency of the analytical 
solution (20) from [9], then the frequency value is ω 0.00698133= rad/s. 
The frequency difference from numerical solution is 410− %. A similar calculation 
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for the second mode gives a discrepancy between the numerical and analytical 
solutions for the frequency in 43 10−⋅ %. 

Now we are to compare the numerical solution of the boundary value problem 
(12) – (14) according to the implicit Adams scheme of the third order of accuracy 
with the analytical solution from [12] for a plane-parallel flow with a linear 
velocity profile at f = 0, N = const, when the wave propagates at an arbitrary angle 
to the flow. For this purpose, we use the second model of the flow velocity from 
[12], when the specified velocity is zero at the bottom. Wave frequency ω in [12] 
(normalized to the Brunt – Väisälä frequency) was taken equal to 0.54 in 
dimensionless variables. Let μ, ν  be the projections of the dimensionless wave 
vector (normalized to π / H ) onto the directions along and across the flow. Then, 
for ν 0.5=  the numerical solution of the boundary value problem (4) in [12] 
according to the implicit Adams scheme of the third order of accuracy provides 
the value μ 0.1742=  for the first mode, which corresponds to both the numerical 
and asymptotic solutions of the dispersion equation (5) in [12]. 

 
Nonlinear effects. The Stokes drift velocity of liquid particles is determined 

by the formula from [21]: 

0

u (u τ )u
t

s d= ∇∫
   ,                                                 (15) 

where u  is a field of Euler wave velocities, the bar above means averaging over 
the wave period. The horizontal velocity component of the Stokes drift, directed 
along the wave vector, up to terms quadratic in the wave amplitude, has the form 

 

**
101 1

10
1 c.c.
ωs

dwA A du w
k dz dz

  
= +  

  
,                                  (16) 

 

where 1 exp(δω )A A t= ⋅ , δω Im(ω)=  is an imaginary part of wave frequency. 
The horizontal component of the Stokes drift velocity transverse to the wave 

propagation direction is determined by the formula 
 

*
* *10 10 0

1 1 10*

* 2 2
* 10 10 0 10 0 0 0 10

1 1 10 10* 2 2 2

1 c.c.
ω

c.c. .
ω

s
dw dw dVv A A if k w

k dz dz dz

w dw dV d w d V dU dV dwif ifA A w k w
dz dz k dz dz dz dz k dz

  
= − + −  Ω   

     − Ω + + + + +     Ω      

 
(17)

 

 

In the presence of an average current, for which the velocity component 0V  
transverse to the wave propagation direction depends on the vertical coordinate, 
the value sν  is nonzero. The vertical component of the Stokes drift velocity is 
proportional to the imaginary part of the frequency and is determined by 
the formula 

( )* *
1 1 10 10*

1 1
ω ωs

dw iA A w w
dz

 = − 
 

.                                          (18) 
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We find vertical wave momentum fluxes uw , vw  taking into account (8), 
(9), (11): 

*
2 * 10 10

1 10 10
dw dwiuw A w w

k dz dz
 

= − 
 

,                                     (19) 

 

( )
* *

2 * * *10 10 0 10 10
1 10 10* *

iw w dV dw dwfvw A w w
dz k dz dz

  
= Ω−Ω + Ω +Ω  ΩΩ ΩΩ   

.       (20) 

 

The vertical wave flux of momentum vw  in formula (20) is nonzero and 
in the absence of flow, the flux of momentum uw  in formula (19) is nonzero only 
in the presence of an average current, for which the velocity component 0V  
transverse to the direction of wave propagation depends on the vertical coordinate. 
In the absence of the Earth’s rotation at f = 0, the wave momentum fluxes are equal 
to zero. 

 
Calculation results. We will analyze the vertical momentum fluxes for 

internal waves and the Stokes drift velocity using the results of the third stage of 
the 44th cruise of R/V Mikhail Lomonosov in the area of the Black Sea 
northwestern shelf 1. The profiles of two components of the mean current velocity 
are given in Fig. 1, the Brunt – Väisälä frequencies are depicted in Fig. 2. 

 

 
 

F i g.  2. Vertical profile of the Brunt – Väisälä frequency 
 
 

 

1 MHI AS USSR, 1985. Report on the Work in the 44th Cruise (3rd Stage) of R/V Mikhail 
Lomonosov, August, 7 – September, 15. Sevastopol: MHI AS USSR. Vol. 1, 135 p. (in Russian). 
PHYSICAL OCEANOGRAPHY   VOL. 28   ISS. 4   (2021)  369 

                                                           



Boundary value problem (12) – (14) of determining the mode vertical structure 
is solved numerically according to the implicit Adams scheme of the third order of 
accuracy. The wave frequency at a fixed wavenumber is found by the shooting 
method from the need to fulfill the boundary conditions (13), (14). 
The eigenfunction (the solution to the boundary value problem (12) – (14)) is 
complex, therefore the vertical wave flux of momentum uw  (18) is nonzero. 
The dependences of real and imaginary wave frequency parts on the wave number 
for the first two modes are shown in Fig. 3, 4. In Fig. 3 the dispersion curves of 
the first two modes are given, 0ω = Re(ω) is the real part of the frequency. 

 

 

 

 

F i g.  3. Dependence of the wave frequency real 
part on the wave number for the first 1 and 
second 2 modes 

 

 

F i g.  4. Dependence of the wave frequency 
imaginary part on the wave number for the first 1 
and second 2 modes 

 
In Fig. 4, the imaginary part of frequency for the first mode is negative at 

k < 0.055 rad/m and positive at k > 0.055 rad/m are demonstrated. In absolute 
value, the imaginary part of the frequency is three to four orders of magnitude less 
than the real part of the frequency. Thus, the first mode has a weak attenuation in 
the low-frequency region at k < 0.055 rad/m, and weak wave amplification 
in the high-frequency region at k > 0.055 rad/m. In the second mode, the imaginary 
part of the frequency is always negative, i.e. the wave attenuates weakly. 
In the first mode attenuation region, the attenuation decrement for the second mode 
is greater in absolute value. 

It is of interest to study the vertical momentum fluxes and the Stokes drift 
velocity for the first mode waves with different signs of the imaginary part of 
the frequency, for example, for internal waves with frequencies of 10 and 16 cph 
(meaning the real part of the frequency). For a wave of the first mode with a 10 cph 
frequency, the imaginary part of 7δω= 8.378 10−− ⋅  rad/s is negative. For a wave of 
the same mode with 16 cph frequency, the imaginary part of 6δω=1.379 10−⋅ rad/s 
is positive. Therefore, further we will compare the vertical wave momentum fluxes 
and the Stokes drift velocity for these waves. In Fig. 5 the profiles of vertical 
momentum fluxes uw  for internal waves of the first mode with 0.5 m amplitude 
and frequencies of 10 cph (red line) and 16 cph (blue line), as well as turbulent flux 

/ /u w  (green line) are given. 
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The turbulent momentum flux is determined by the formula / / 0
z

dUu w K
dz

=− , 

the coefficient of vertical turbulent exchange – by the formula 4 10.93 10z cK N− −≅ ⋅  
m2/s ( cN  corresponds to the Brunt – Väisälä frequency in cph) [22, 23]. In general, 
with the exception of 15–25 m depth interval, the turbulent flux prevails over 
the wave flux. The wave momentum flux for waves with 10 cph frequency 
prevails over the flux for waves with a frequency of 16 cph in the depth interval of 
15–40 m. In the upper 15-meter layer, there is a slight predominance of the flux for 
waves with a frequency of 16 cph. Deeper than 40 m, wave fluxes are comparable 
in magnitude. 

 

  
 

F i g.  5. Profiles of the wave uw  and turbulent 
/ /u w  vertical momentum fluxes 

 
F i g.  6. Profiles of the wave vw  and turbulent 

/ /v w  vertical momentum fluxes 
 
In Fig. 6 the profiles of vertical fluxes of momentum vw  for internal waves of 

the first mode with 10 cph (red line) and 16 cph (blue line) frequencies, as well as 
turbulent flux / /v w  (green line) are demonstrated. 

The turbulent momentum flux is determined by the formula / / 0
z

dVv w K
dz

=− . 

The dominance of turbulent flux over the wave flux is already absent here. In 2.5–
40 m depth interval of the waves with 10 cph frequency vertical momentum flux 
vw exceeds the turbulent one in absolute value. For the waves with 16 cph 
frequency, the vertical momentum flux vw is less than for the waves with 10 cph 
frequency. 

It is of interest to compare uw  and vw  fluxes with each other. In Fig. 7 
the profiles of these fluxes for the first mode waves with 10 cph frequency are 
represented. In general, uw  flux (red line) is noticeably inferior to vw  flux 
(blue line). 

PHYSICAL OCEANOGRAPHY   VOL. 28   ISS. 4   (2021)  371 



Now we are to compare the Stokes drift velocity for internal waves of the first 
mode with 10 and 16 cph frequencies. The vertical profiles of the Stokes drift 
velocity component along the wave propagation direction (formula (16)) are 
demonstrated in Fig. 8 for the waves with 10 cph (red line) and 16 cph frequency 
(blue line). The structure of the profiles of the Stokes drift velocity longitudinal 
component is very similar, only in the upper 10-m layer and deeper than 30 m 
the Stokes drift velocity is higher for the waves with 10 cph frequency. 

 

  
F i g.  7. Profiles of the wave uw , vw  vertical 
momentum fluxes 

 

F i g.  8. Vertical profiles of the longitudinal 
component of the Stokes drift velocity 

 

  
F i g.  9. Profiles of the Stokes drift velocity 
component transverse to the wave propagation 
direction 
 

F i g.  10. Vertical profiles of two components 
of the Stokes drift horizontal velocity 

The vertical profiles of the Stokes drift velocity component transverse to 
the direction of wave propagation (formula (17)) for waves with 10 cph (red line) 
and 16 cph (blue line) frequencies are demonstrated in Fig. 9. Here, in the upper 
25-m layer, the moduli of the maximum and minimum values of this velocity 
component for the waves with 16 cph frequency is higher, while deeper than 25 m 
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and up to 48 m depth, the Stokes drift velocity prevails for the waves with 10 cph 
frequency. 

It is of interest to compare the Stokes drift velocities along and across 
the direction of wave propagation. In Fig. 10 the vertical profiles of these velocity 
components for the waves with 10 cph period are presented. The Stokes drift 
velocity su  along the direction of wave propagation (red line) noticeably exceeds 
the transverse velocity sv  (blue line). 

 

 
 
F i g.  11. Profiles of the vertical component of the Stokes drift velocity 

 
Now we are to compare the vertical component of the Stokes drift velocity 

(formula (18)) for waves with of 10 and 16 cph frequencies. In Fig. 11 
the maximum (in modulus) velocity prevails for the waves with frequency 16 cph 
(blue line). The directions of vertical component of Stokes drift velocity for 
the waves with 10 and 16 cph frequencies are opposite, since it is proportional to 
the imaginary part of frequency and differs in sign. The magnitude of the vertical 
component of this velocity is very small, four orders of magnitude less than 
the velocity along the direction of wave propagation. However, it can make 
a significant contribution to the vertical heat and salt transfer, as well as to 
the vertical fine structure generation [24]. 

 
Conclusions 

1. Vertical momentum fluxes of wave uw , vw  of internal waves at two-
dimensional shear flow with regard to the Earth rotation differ from zero and can 
be comparable or exceed corresponding turbulent fluxes. 

2. The imaginary part of wave frequency differs from zero and is negative for 
the second mode – weak wave attenuation takes place. In the first mode 
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the attenuation occurs in the low frequency area at k < 0.055 rad/m, at 
k > 0.055 rad/m a weak wave amplification takes place. 

3. The Stokes drift velocity along the direction of wave propagation 
noticeably exceeds transverse velocity.  

4. The vertical components of the Stokes drift velocity of the first mode 
waves with 10 and 16 cph frequencies has different signs due to the fact that it is 
proportional to the imaginary part of frequency. 
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