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Purpose. The description of the internal gravity waves dynamics in the ocean with background fields 
of shear currents is a very difficult problem even in the linear approximation. The mathematical problem 
describing wave dynamics is reduced to the analysis of a system of partial differential equations; and 
while taking into account the vertical and horizontal inhomogeneity, this system of equations does not 
allow separation of the variables. Application of various approximations makes it possible to construct 
analytical solutions for the model distributions of buoyancy frequency and background shear ocean 
currents. The work is aimed at studying dynamics of internal gravity waves in the ocean with the 
arbitrary and model distributions of density and background shear currents. 
Methods and Results. The paper represents the numerical and analytical solutions describing the main 
phase characteristics of the internal gravity wave fields in the stratified ocean of finite depth, both for 
arbitrary and model distributions of the buoyancy frequency and the background shear currents. 
The currents are considered to be stationary and horizontally homogeneous on the assumption that 
the scale of the currents' horizontal and temporal variability is much larger than the characteristic 
lengths and periods of internal gravity waves. Having been used, the Fourier method permitted to obtain 
integral representations of the solutions under the Miles – Howard stability condition is fulfilled. To 
solve the vertical spectral problem, proposed is the algorithm for calculating the main dispersion 
dependences that determine the phase characteristics of the generated wave fields. The calculations for 
one real distribution of buoyancy frequency and shear flow profile are represented. Transformation of 
the dispersion surfaces and phase structures of the internal gravitational waves’ fields is studied 
depending on the generation parameters. To solve the problem analytically, constant distribution of the 
buoyancy frequency and linear dependences of the background shear current on depth were used. For 
the model distribution of the buoyancy and shear flow frequencies, the explicit analytical expressions 
describing the solutions of the vertical spectral problem were derived. The numerical and asymptotic 
solutions for the characteristic oceanic parameters were compared. 
Conclusions. The obtained results show that the asymptotic constructions using the model dependences 
of the buoyancy frequency and the background shear velocities’ distribution, describe the numerical 
solutions of the vertical spectral problem to a good degree of accuracy. The model representations, 
having been applied for hydrological parameters, make it possible to describe qualitatively correctly 
the main characteristics of internal gravity waves in the ocean with the arbitrary background shear 
currents. 
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Introduction. In the real ocean internal gravity waves (IGW) propagate against 
the background of shear ocean currents. Therefore, in connection with the progress 
in the study of large-scale oceanic wave processes, the study of IGW dynamics and 
propagation in the ocean, taking into account the presence of currents, is an urgent 
task [1–3]. In the ocean, the vertical and horizontal dynamics of background shear 
currents is largely associated with internal waves. In the ocean, such currents can 
manifest themselves, for example, in the region of the seasonal thermocline and have 
a noticeable effect on the IGW dynamics [4, 5]. As a first approximation, it can be 
assumed that background currents with a vertical velocity shear are weakly 
dependent on time and horizontal coordinates. If the scale of changes in the currents 
horizontally is much larger than the IGW lengths, and the scale of temporal 
variability is much larger than the IGW periods, then such currents can be considered 
as stationary and horizontally homogeneous [1, 3]. 

In a general formulation, the description of the IGW dynamics in the ocean with 
background fields of shear currents is a very difficult problem in the linear 
approximation yet. In this case, the problem is reduced to the analysis of a system of 
partial differential equations, and while taking into account the vertical and 
horizontal inhomogeneity, this system of equations does not allow the separation of 
variables. Using various approximations, including the WKB method, based on 
a realistic assumption about the smoothness of variations in the parameters of 
the oceanic medium in comparison with the IGW lengths, it is possible to construct 
analytical solutions for the model distributions of the buoyancy and shear currents 
[3, 5, 6]. Therefore, it is of undoubted interest to study IGW in the ocean with 
an arbitrary vertical distribution of both the density and the background shear 
currents observed under sea conditions [4, 7–9]. Thus, it becomes possible to study 
the amplitude-phase characteristics of the wave fields of real oceanological 
parameters. 

One of the main methods for solving problems of IGW wave dynamics in 
the ocean with arbitrary background shear currents is the Fourier method, which 
provides the construction of integral representations of solutions requiring numerical 
and asymptotic analysis [10–15]. Direct numerical modeling methods are not always 
effective for studying IGW generation by arbitrary non-local and non-stationary 
sources of disturbances, especially taking into account the variability of the main 
hydrological parameters, and require verification and comparison with solutions of 
model problems [5, 16]. Therefore, when analyzing the IGW dynamics in the real 
ocean, various asymptotic and analytical models are useful [3, 6, 14, 17–20]. 

In order to study the mechanism of the effect of currents on IGW, it is necessary 
to consider fairly simple model concepts for stratification and shear currents. The 
synthesis of various analytical and asymptotic results can give an initial qualitative 
and quantitative understanding of wave oceanic processes [1, 3, 5]. It can also be 
expected that taking into account the real properties of the parameters of the marine 
environment will make it possible to study qualitatively new effects of wave 
generation. Asymptotic solutions require verification of the results obtained with 
their help; therefore, comparison of numerical and asymptotic results is of particular 
interest for studying the dynamics of IGW in the ocean with currents [3, 5, 16]. 

The aim of this work is to study the dynamics of IGW in the ocean with a shear 
of the current velocity using numerical and analytical solutions that describe the 
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main features of the dispersion dependences and phase characteristics of IGW fields 
in a stratified ocean of finite depth for arbitrary and model vertical distributions of 
the buoyancy frequency and background shear currents. 

 
Problem statement, integral forms of solutions. We consider a vertically 

stratified medium of finite depth H. The linearized system of hydrodynamic 
equations with respect to the unperturbed state has the form [1–3] 
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where V(z), U(z) are the components of the background shear current vector 
at z horizon; U1, U2, W are the components of perturbed velocity; p, ρ  are pressure 
and density disturbances; ρ0(z) is unperturbed density of the marine environment; 
Q(t, x, y, z) is the density distribution of mass sources. Cross differentiation from this 
system of equations using the Boussinesq approximation can be used to obtain one 
equation for small perturbations of the vertical velocity component [1–3, 5, 6, 19]: 
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where N2(z) is the square of Brunt – Väisälä frequency (buoyancy frequency); g is a 
gravitational acceleration. The boundary conditions are taken in the form (vertical 
axis z is directed upwards): W = 0 at z = 0, –H. Next, we consider the Green’s 
function of equation (1), i.e the solution of the problem [6, 19]: 

 

L Γ(t, x, y, z, z΄) = δ(t)δ(x)δ(y)δ(z – z΄),                                (2) 
 

Γ = 0   at z = 0,   –H;  Γ ≡ 0   at t < 0, 
 

where z΄ is the depth of the point source of disturbances and it is assumed that 
the point source is turned on at time t = 0, and at t < 0 the medium is in a state of rest 
[6, 19]. Wave disturbances from an arbitrary non-stationary non-local source of 
disturbances are determined by the corresponding convolution [1, 6, 19]. In 
the presence of background shear currents in the ocean, IGW can interact with these 
currents and exchange energy with them; therefore, natural wave oscillations can be 
exponentially growing. Further, it is assumed that the Miles – Howard stability 
condition for the Richardson number is satisfied [3, 10–12]:
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satisfied, then the corresponding spectral problem has no complex eigenvalues 
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[3, 14]. The characteristic values of the Richardson numbers in different areas of the 
World Ocean in the absence of dynamic instability of background shear currents can 
be within 2–20 intervals [4, 7–9]. 

The solution to problem (2) is sought in the form of the Fourier integrals 
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Then from the condition Γ ≡ 0 for t < 0 it follows that the poles and cuts when 
integrating with respect to the variable ω must be bypassed in the upper half-plane 
[3, 6, 19]. The function G (ω, μ, ν, z, z΄) is a solution to the following problem [3, 
12, 19]: 

 

ΠG(ω, μ, ν, z, z΄) = δ(z – z΄),                                       (3) 
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G = 0 at z = 0, –H;   k2 = µ2 + ν2;   f(z) = µV(z) + νU(z). 
 

Numerical algorithm and calculation results. Spectral problem (3) for 
arbitrary distributions of functions N(z), V(z), U(z) admits only a numerical solution. 
In order to solve this problem, you can use a numerical algorithm based on the 
approximation of the main coefficients (3) by piecewise linear and piecewise 
constant functions. We will consider ( )ν,μωω n=  a spectral parameter that requires 
to be determined, μ and ν are independent variables. 

The eigenfunction φ (z) satisfies the equation 
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Further we introduce the new function F(z) = φ(z)/(ω – f(z)) which is determined 
from 
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F(z) = 0 at z = 0, –H. 
For numerical solution of the problem (4), the interval of variation –H < z < 0 is 

divided into J sections (layers): Ij = [zj–1, zj], j = 1, 2, …, J, where z0 = 0, zJ = –H. We 

approximate the coefficient )(ω zf−  in front of function ( )
dz

zF∂  by a piecewise-

linear continuous function, the coefficient in front of F(z) function – by a piecewise-
constant function, i.e. we will assume that ( ) ( )=−+=− jjj zzBAzfω ;zBD jj +=  

( ) ( )( ) ;ω 222
jCzfzN =−−  .1 jj zzz <<−  Then, in each layer the Euler differential 

equation is obtained to determine the function F(z). 
It is known that the eigenvalues of the spectral problem (4) form two series [3, 6, 

12–15, 19]. In the first series ( )νμ,ωn  decreases with increasing n and tends to +f  at 
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∞→n  ( +f  is the maximum )(zf value on the variation interval of variable z). In 
the second series ( )ν,μωn  increases with increasing n and tends to −f  at ∞→n  (

−f is the minimum value in the variation interval of variable z). This behavior feature 
of the dispersion relations is used to find the eigenvalues. Choosing any initial 
approximation θ so that ,θ +> f is necessary to integrate equation (4), using the 

following as initial values: F(z) = 0, ( ) 1=∂
dz

zF  at z = 0. Если найденное решение 

имеет m корней внутри интервала 0<<− zH  и m < nIf the solution we found  
has m roots inside 0<<− zH  interval and m < n, then θ value decreases; if m> n, 
then θ increases. By choosing θ value, it is possible to achieve that the solution 
vanishes at z = –H and has exactly n roots inside the interval –H <z <0. The resulting 
value of ω is an eigenvalue and the corresponding solution F (z) is an eigenfunction. 
Then the eigenfunction φ(z) is determined from the relation φ(z) = F(z) (ω – f(z)). 
The performed testing numerical calculations demonstrated good convergence of the 
proposed numerical algorithm with an increase in the number of layers J. 

 

 
 

F i g.  1. Buoyancy frequency distribution 
 

For numerical calculations we used typical distributions of the square of 
the buoyancy frequency ( ),2 zN  as well as the components of the shear current V(z) 
(Fig. 1, 2), which are typical for many regions of the World Ocean, in particular for 
the water area of the North Atlantic (passages of the East Azores Ridge) [4 , 7–9]. 
The shear flow component U(z) is assumed to be equal to zero: U(z) = 0. 
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F i g.  2. Shear flow distribution by depth 
 

 
 

F i g.  3. Dispersion surface 
 

Without loss of generality and for greater clarity of the obtained results, all 
numerical calculations are given for the second wave mode. In Fig. 3 the results of 
calculations of the dispersion surface ω2 (μ, ν) are demonstrated. The structure of 
local extrema and other singular points in the space of the wave vector components 
(ν, μ) determines the corresponding features of the phase structures of excited IGW 
wave fields in Cartesian coordinates (x, y) [21, 22]. As can be seen from 
the presented numerical results, the dispersion surface has a rather complex spatial 
structure. Numerically calculated dispersion surfaces can have several local extrema, 
which corresponds to the generation of various types of wave structures [17, 18, 20, 
21]. In Fig. 4 and 5 the results of calculating the dispersion dependences μ2 (ν, ω) for 
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different values of ω frequency are given. In Fig. 4 ω = 0.0013 s –1 (curve 1), ω = 
0.0016 s –1 (curve 2), ω = 0.00185 s –1 (curve 3); in Fig. 5 ω = 0.00215 s –1 (curve 4), 
ω = 0.0038 s –1 (curve 5). 

 

 
 

F i g.  4. Dispersion dependences for different values of ω: line 1 – one closed arc; lines 2 – two closed 
arcs; line 3 – one closed curve with three inflection points 

 

 
 

F i g.  5. Dispersion dependences for different values of ω: lines 4 – two open curves, upper curve 4 – 
with three inflection points; line 5 – upper curve with one inflection point 

 
Further we are to describe the qualitative evolution of the dispersion relations 

depending on the variation in parameter ω. At small ω values, the dispersion curve 

PHYSICAL OCEANOGRAPHY   VOL. 28   ISS. 4   (2021) 444 



has the form of a single closed curve (Fig. 4). As ω increases and depending on 
the parameters of the stratified medium (the buoyancy frequency and shear flow), 
the dispersion curves can consist of several closed curves (Fig. 5). Numerical 
calculations show that with an increase in the mode number, the number of such 
closed curves, as a rule, increases. Some of the open curves can join together (Fig. 4, 
5) and merge into one curve, which has an ambiguous omega-shaped structure with 
several inflection points. For sufficiently large ω values, all dispersion dependences 
have the form of several open single-valued curves (Fig. 5). The presence of 
inflection points of dispersion curves determines the locus of points (caustics, wave 
fronts) where the wave field can change its qualitative behavior [6, 17, 18, 20–22]. 

These features of the dispersion relations mean that the total wave field of 
excited IGWs in the ocean with background shear currents is the sum of several types 
of wave structures. Closed dispersion curves describe the generation of ring (shear) 
waves, with each branch corresponding to a separate wave system. Simple arcs of 
dispersion curves describe the generation of wedge-shaped (longitudinal) waves; 
each arc corresponds to a separate wave system [17, 18, 20]. Numerical calculations 
for various oceanic distributions of the background shear current components show 
that the alternating sign of the flow, as a rule, leads to the appearance of closed curves 
of dispersion relations and, accordingly, to the generation of ring (shear) waves. If 
the current throughout the ocean depth does not change its sign, then the dispersion 
curves are a set of only simple arcs and all excited waves are wedge-shaped 
(longitudinal). 

In Fig. 6 and 7 the results of numerical calculations of the IGW phase structure 
for various ω frequency values given. The lines of equal phase Ω of each wave mode 
are specified parametrically (with the parameter ν) [17, 18]: 

  

)),ν(μν)ν(μ/()ω()ν( ′−Ω−= nntx )).ν(μν)ν(/(ω)ν(μ)ν( μ)( ′−′−= Ω− nnn ty  
 

The lines of equal phase Ω in the figures are solid curves, dashed lines are 
the corresponding wave fronts (caustics). In Fig. 6, the parameter values were as 
follows: ω = 0.0026 s –1, t = 3600 s. The half-opening angle of the wave wedge 
(external) is α1 = 52.44°, the half-opening angle of the inner wedge is α0 = 31.46° (α0 
direction is set by the third dashed ray from the left). The value α0 is defined by the 
equality α0 = –arctgν0, where ν0 is the positive root of the equation μ′2(ν) = μ2(ν)/ν. 
The half-angle values of the other three wavefronts αk (k = 1, 2, 3) are determined by 
the local extrema of the function μ′2(ν): αk = –arctg(μ′2(ν*

k)), where ν*
k are the roots 

of the equation μ′′2(ν*
k) = 0. Waves in the inner wedge (waves of the first type) run 

to the left (to the origin), waves in the outer wedge (waves of the second type) run 
to the right (from the origin). Phase along  the crests of the first-type waves (from 
the left to the right): Ω = {4π, 6π, 8π, 10π, 12π, 14π}, phase along the crests of the 
second-type waves (from right to left): Ω = {–2π, 0, 2π}. 
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F i g.  6. Equal phase lines for two wave systems 

 

 
  

F i g.  7. Equal phase lines for one wave system 
 
At a certain time moment τ = Ω/ω, the first-type wave transforms into 

the second-type wave. The other two pairs of wave fronts form angles α2 = 34.79° 
and α3 = 24.46° with the x axis, respectively. In Fig. 7, the parameter values are as 
follows: ω = 0.0012 s –1, t = 3600 s. Waves are limited by a wave front with a half-
opening angle α1, where α1 = arctg (μ′2(ν*)), ν* is the root of the equation μ′′2(ν*) = 
= 0. The half-opening angle of the wave wedge is α1 = 12.63°. The waves inside the 
wedge run to the right (from the origin), the phase along the wave crests (from right 
to left): Ω = {4π, 6π, 8π, 10π, 12π}. 

Thus, numerical calculations for various modes of wave generation demonstrate 
a wide variety of excited IGWs in the ocean with arbitrary vertical distributions of 
the buoyancy frequency and background shear currents. For a detailed analysis of 
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dispersion relations, it is possible to use model representations of hydrological 
parameters, which qualitatively correctly describe both the nature and the scale of 
the spatial variability of shear oceanic currents over the depth. 

 
Asymptotic solutions. Model representations for the buoyancy frequency shear 

flow provide the construction of asymptotic solutions. The following assumptions 
are used: the Brunt – Väisälä frequency is constant ( )( )const== NzN ; background 
shear flow is one-dimensional ( )( );0≡zU ( ) ( ) ,/00 HzVVVzV H−+=  

( ) ( )HVVVV H −== ,00 is a linear function of depth. 
 

 
 

F i g.  8. Dispersion dependences for different values of ω: line 1 – one closed arc; line 2 – one closed arc 
 
In Fig. 8–10 the results of calculations of the dispersion dependences μ2 (ν, ω) 

for averaged real conditions and the same values of the frequency ω. In Fig. 8 ω = = 
0.0013 s –1 (curve 1), ω = 0.0016 s –1 (curve 2); in Fig. 9 ω = 0.00185 s –1 (curve 3); 
in Fig. 10 ω = 0.00215 s –1 (curve 4), ω = 0.0038 s –1 (curve 5). The constant averaged 

buoyancy frequency is ∫ =
−
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F i g.  9. Dispersion dependences for different values of ω: lines 3 – one closed arc, one open curve 
with one inflection point 

 

 
 
F i g.  10. Dispersion dependences for different values of ω: line 4 – one open curve with one inflection 
point; line 5 – upper curve with one inflection point 
 

An analysis of the numerical results shows that the model representations of 
hydrological parameters make it possible to describe the main qualitative features of 
the dispersion relations, in particular, to obtain closed dispersion curves for small ω 
values describing the generation of ring (shear) waves. At large ω values the 
dispersion dependences for both real and model distributions of buoyancy frequency 
and shear flows have the form of two open curves. Numerical calculations using the 
real distribution of the buoyancy and shear flow frequencies show that a dispersion 
pattern (depending on the frequency ω), at which there are more than two inflection 
points, which means that several wave trains contribute to far IGW field, can be 
observed. A more complex structure of dispersion relations, including the presence 
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of more than two inflection points, can be investigated only by numerical methods 
using real oceanological data. 

However, using the model representations, problem (4) can be solved 
analytically. In this case, the dispersion relation has the form [17, 18, 20] 

 

0)))π(β())0(β((Im =−− rIrI ii λλ ,                                            (5) 
 

where λiI±  is a modified  Bessel function of imaginary index iλ; 

( ) ( )( ) 4/1βλ;/μω 2 −=−= NzVz ; β = k/bμ ( ) NHVVb H /0 −=  [17, 18, 20, 23]. 
The solution of equation (6) φ (z, μ) has the form [17, 18, 20] 
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λ( ,μ) 2β ( ) (β ( )).iz r z r zI ±=Ψ±  
 

 
Dispersion equation (5) does not have exact analytical solutions; however, one 

can find their asymptotics for large Richarson numbers. The Richardson number 
used in this model is Ri = 767 >> 1/4. Equation (5) is solved by two families 
of dispersion curves: µn1 (ν), µn2 (ν). Firstly we consider the family µn1 (ν). All curves 
of this family are within the interval (µd, µa), which is divided by the turning point 
into two intervals. In the interval (µc, µa), both functions from (6) oscillate. Replacing 
each of them with asymptotics, one can obtain [17, 18, 20, 23]: β(Θ(r(–π)) – Θ(r(0))) 
= πn. The solution to this equation has the form 

 

νn(µ) = ± ((πbn/(Θ(r(–π)) – Θ(r(0)))2 – 1)µ2)1/2.                             (7)  

It is possible to obtain from equation (7) the inverse dependence µn1 (ν) using a 
standard computing system of the “Mathematics” type. In the interval (µd, µc), 
the second function in (6) oscillates, the first no longer oscillates. Therefore, 
replacing these functions with the corresponding asymptotics [17, 18, 20, 23], we 
can obtain 

 

|β|Θ(r(–π)) – π/4 + arctg(exp(–2|β|Φ(r(0))))/2= – πn.              (8) 
 

In contrast to (5), equation (8) can be easily solved numerically, since the left-
hand side (asymptotic approximation of the phase) is a strictly monotonic function. 
In Fig. 11 the dispersion curves of the second mode µ21 (ν), calculated numerically 
from equation (4) (solid line), and their asymptotic approximations, calculated by 
formulas (7), (8) (dashed lines) are represented. The second family of dispersion 
curves µn2 (ν) lies in the interval (µb, µe). In this case, it is necessary to take into 
account the contribution to the phase of the second function from (8), and as a result, 
we can obtain the asymptotics of equation (5): |β|Θ(r (–π)) = π/4 – πn. The solution 
to this equation is described by expression (8), using which the dependence µn2 (ν) 
can be obtained. In Fig. 12 the results of ( )z22φ  calculations – the eigenfunction of 
the second mode, normalized to its maximum value, is demonstrated. 
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F i g.  11. Dispersion curves of the second mode 
 

 
 
 

F i g.  12. Eigenfunction of the second mode at ν = 0,01 m-1, μ = 0,00025 m-1, ω = 0,002 s-1. Solid line – 
numerical result (4), dashed line – asymptotics (7) 

 
The obtained results demonstrate a good agreement between the asymptotics 

and numerical calculations; therefore, the use of model representations for 
hydrological parameters makes it possible to qualitatively correctly describe the 
main characteristics of IGW in the ocean with background shear currents. It can be 
noted, in particular, that with the use of hydrological parameters the flow does not 
change its sign over the entire depth of the ocean, the dispersion curves consist of 
completely open branches and therefore only wedge-shaped (longitudinal) waves 
can be excited [17, 18, 20]. 

The analysis of numerical calculations showed that taking into account the real 
distributions of the main hydrological parameters of the ocean makes it possible to 
study the whole variety of generated wave systems. A change in the main parameters 
of wave generation causes a noticeable qualitative rearrangement of the phase 
patterns of the excited IGW fields, associated with the transformation of dispersion 
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dependences. The use of analytical and asymptotic methods makes it possible to 
determine the main characteristics of IGW in the ocean with background shear 
currents. Therefore, in order to study IGW in a real ocean, it is necessary to combine 
both precise numerical methods for studying wave fields and various asymptotic 
approaches that make it possible to study the main qualitative features of the excited 
waves. In the general case, the solution of the dispersion equation and the qualitative 
analysis of the dispersion relations is a significant mathematical difficulty [3, 12–15, 
19]. 

The obtained analytical approximations of the dispersion curves provide 
the solution of more complex problems of the stratified media wave dynamics. 
In particular, the constructed asymptotics of the dispersion relations further allow us 
to study the problem of studying the dynamics of IGW in the ocean by slowly 
varying and nonstationary parameters. In this case, the solution can be represented 
as a sum of wave train, the phase structure of which is determined by the analytical 
properties of the corresponding dispersion dependences. The phase functions (model 
integrals) of these asymptotic solutions are expressed in terms of various special 
functions: Fresnel integrals, Airy functions, Pearcey integrals [21, 22, 24]. The 
specific choice of phase functions (model integrals) is completely determined by the 
analytical properties of the dispersion relations. 

 
Conclusion.  
Numerical and analytical solutions that describe the main phase characteristics 

of IGW fields in a stratified ocean of finite depth, both for arbitrary and model 
distributions of the buoyancy frequency and background shear currents are studied 
in the work. For the analytical solution of the problem, a constant distribution of the 
buoyancy frequency and linear dependences of the background shear current on the 
depth were used. Model representations for the main hydrological characteristics 
(buoyancy frequency and background shear currents) make it possible to reduce the 
main spectral problem to a simpler one, and also to study this simplified spectral 
problem asymptotically. The obtained results show that asymptotic constructions, 
which use model representations of the buoyancy frequency and the distribution of 
background shear velocities, describe the spectral problem solutions with a good 
accuracy degree. The proposed asymptotic methods provide the analytical and 
qualitative investigation of wave dynamics, which is important for the operational 
analysis of field measurements of IGW in the ocean. Analytical expressions for 
dispersion curves can be used, in particular, for a qualitative interpretation of the 
observed wave phenomena in the ocean and for the development of efficient 
algorithms for detecting IGW using the radar methods. 
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