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Purpose. The problem of a non-zonal vortex layer on the β-plane in the Miles – Ribner formulation is 
considered. It is known that in the absence of the β-effect, the vortex layer has no neutral eigenmodes, 
and the available two ones (varicose and sinusoidal) are unstable. Initially, generalization of 
the problem to the β-plane concerned only the zonal case. The problem for a non-zonal vortex layer is 
examined for the first time in the paper. It is known that in the WKB approximation for the linear 
wave disturbances (regardless of whether a zonal or non-zonal background flow is considered), there 
is an adiabatic invariant in the form of the law of the enstrophy (vorticity) conservation. For the zonal 
vortex layer, the enstrophy conservation law also holds, and no vorticity exchange occurs between 
the waves and the flow in the zonal case. The non-zonal vortex layer has qualitatively different 
features; particularly, it does not retain enstrophy. Thus, as a result, there appears a new class of 
solutions which can be interpreted as pure radiation of the Rossby waves by a non-zonal flow. 
Generalizing the vortex layer problem on the β-plane to the non-zonal case constitutes the basic aim 
of the present study. 
Methods and Results. A new class of linear stationary wave solutions, namely the Rossby waves, is 
found. It is shown a non-zonal flow can be directed in one way, whereas the stationary wave 
disturbances can move in the opposite (contrary) direction. The coexistence of such solutions for 
the shear non-zonal flow and stationary wave disturbances takes place due to the influence of the 
external force and mathematically comes from a non-self-adjoining character of the linear operator 
for a non-zonal background flow. 
Conclusion. There exists a new class of solutions that can be interpreted as pure radiation of 
the Rossby waves by a non-zonal flow. There is no such solution for a zonal flow. It is just non-
zoning that gives the effect of pure radiation and corresponds to the classical definition of radiation. 
This approach makes it possible to eliminate inconsistency in terminology, when instabilities are 
mistakenly called radiation, and radiation – pure radiation. 
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Introduction 
In the analytical description of the interaction of large-scale flows and wave 

disturbances in a linear formulation, two qualitatively different approaches are 
used. The first approach is based on the assumption that the wave field of 
the background flow is described by smooth functions; in this case, either model 
problems or the WKB approximation are used. In model problems, the physical 
fields of the background flow (velocity field and stratification) are specified by 
analytical expressions, and the solution of the problem, as a rule, can be reduced to 
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special functions [1–5]. When using the WKB approximation, it is assumed that 
the background flow changes rather smoothly, the wave has time to rebuild its field 
to match the current parameters of the background flow, and thus, as a result, we 
actually obtain a parametric dependence on the background flows [6, 7]. 

The second approach boils down to rejecting the complete smoothness of 
the background fields and switching to the models of piecewise continuous profiles 
of the background flow. The simplest formulation of such problems is a vortex 
layer problem when the velocity field consists of two different constants on 
opposite sides of the vortex layer. 

It is known that for Rossby waves within the WKB approximation (assuming 
a smooth variation in the background flow velocity) there is a dynamic invariant in 
the form of the enstrophy conservation law, regardless of whether the background 
flow is zonal or non-zonal [5]. The result obtained for the zonal flow is also 
preserved for the zonal vortex layer when solving the problem in the Miles – 
Ribner formulation. However, if the flow is not zonal, then the results of the WKB 
approximation and the results for the vortex layer diverge. The Miles – Ribner 
problem loses its symmetry properties for Hermitian operators, and the analysis 
becomes extremely laborious. 

According to the classical works (for example, [8–10]), in a linear problem 
when studying the interaction of waves and currents, the first thing to do is 
to analyze the vortex layer and its eigenmodes. It is known that in the absence of 
β-effect, the vortex layer has no neutral eigenmodes, and the two existing modes 
are unstable, i.e. they are in the complex plane. Since there are no neutral modes, 
and the vortex layer cannot coexist with stationary wave solutions, this problem is 
often simply called the Kelvin – Helmholtz instability problem. 

The generalization of the vortex layer to the β-plane was performed in [11], 
where an equation with radicals was obtained. In order to solve it, just as in 
the absence of β-effect, one radical should be transferred to the right side and then 
both parts should be squared. However, in this case, it is no longer a quadratic 
equation, as it was in the absence of the β-parameter, but a cubic one. It has one 
real and two complex roots, which in fact are generalized Kelvin – Helmholtz 
modes. It is fundamentally important, according to the authors of the work [11, 
p. 85–86] that the neutral root is an “artificially acquired” root that arose as a result 
of squaring the initial dispersion relation for the eigenmode of the vortex layer. 

However, later L. D. Talley [12] made a curious mistake, which began to be 
repeated many times in subsequent works. L. D. Talley writes out a cubic equation 
(formula (21) in [12, p. 977]), which coincides with the corresponding equation 
(2.6) from [11, p. 85], and on its basis makes the following erroneous statements: 
the author calls this cubic equation the dispersion relation, but this is incorrect 
(since it is the square of the dispersion relation); states that this dispersion relation 
has three roots: one real (neutral mode) and two complex ones. But at the same 
time L. D. Talley [12] does not exclude the neutral mode, as should have been done 
and as done in [11], and later in [13]. 

Unfortunately, V. M. Kamenkovich and J. Pedlosky [14], like many other 
authors who later cited this work by L. D. Talley [12], did not notice this 
fundamental error, which is why all subsequent results of their studies do not look 
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entirely correct. Moreover, since the work of L. D. Talley [12], the concepts are 
confused and used incorrectly. If L. N. Howard and P. G. Drazin [11] considered 
neutral solutions as radiation and complex modes as instabilities, then L. D. Talley 
[12] did not call the neutral solutions radiation, but invented the new term “pure 
radiation” using the term “radiation” for one of the unstable modes. However, in 
fact, this is just a mode localized in the vicinity of the vortex layer. Unfortunately, 
this erroneous terminology was not fixed, and many subsequent works by various 
authors. 

There are two qualitatively different approaches to problems with 
a discontinuous velocity profile. The most famous of them is presented in 
the monograph [8], in which solutions for the vortex layer are sought immediately in 
the form of functions strictly damping at infinity. The authors show that if the β-
effect is absent and the density field is constant, then the eigenvalues for the vortex 
layer mode are strictly complex, i.e. neutral solutions are absent. 

However, this raises a reasonable question: how do these results, obtained for 
absolutely smooth functions of the background flux or in the WKB approximation, 
can be compared with the results obtained when the background fields are 
completely smooth. In the linear formulation, both in the WKB approximation and 
for the vortex layer, the interaction of Rossby waves and zonal flows occurs with 
the preservation of the adiabatic invariant, i.e. when the enstrophy conservation law 
is fulfilled. But in fact, for any formulation of such a problem, there is not any 
interaction, that is, the total flow of enstrophy does not change. In this case, it does 
not matter whether the wave is refracted smoothly on an alternating zonal flow or 
a reflected wave is also added. 

However, for non-zonal flows the situation is completely different. It is known 
that zonal unstable solutions become more unstable upon passing to the non-zonal 
case [14]. Moreover, the statements of all theorems on the stability of zonal flows, 
considering the upper limiting estimates, for example, the Howard semicircle 
theorem [15], during the transition to the non-zonal case cease to be true at all [16]. 
It was shown in [5] that, for smooth analytical functions in the WKB 
approximation, when the Rossby wave propagates on a non-zonal jet flow in 
the linear approximation, their interaction occurs within the framework of 
an adiabatic invariant, which is the enstrophy conservation law. However, with 
such interaction, the wave actually retains its vorticity and no exchange of vorticity 
between the wave and the flow occurs. Then the question arises: how stable is 
the obtained result if we abandon the assumption about the background flow 
smoothness variation? In this paper, we provide an answer to this question. 

The problem of eigenmodes for a zonal vortex layer on the β-plane was 
considered in [11, 17], which is mentioned in the monograph [8]. The key point to 
which attention should be paid is that the authors in their reasoning do not 
distinguish between the zonal and non-zonal flow. They consider “just a flow”, 
although in reality their equations are derived strictly for the zonal flow. 

Looking forward, we are to fix the main line of our reasoning. In our study, we 
show that for a non-zonal background flow, when this problem is transferred to 
the β-plane, the effect of radiation arises, moreover, it is pure radiation 
(the terminology of L. D. Talley [12]), at which in the refractive and reflection 
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coefficients on the real axis appears a pole. Note that this fact was not previously 
determined. Its simplest explanation: the non-zonal background flow is not actually 
a solution of the vorticity equation in the β-plane and, as a consequence, 
the operator describing linear perturbations in the non-zonal flow is not Hermitian. 

The term “pure radiation” is used here because in the literature the simple term 
“radiation” is used for unstable modes when one of the two unstable modes is 
simply designated by the author as emitting [12]. However, we do not build 
the mode in the classical sense of the word, but for the analysis, we use Miles – 
Ribner approach, which was developed in gas dynamics in the 1960s for solving 
the problem of the interaction of the sound waves with a tangential discontinuity of 
the velocity and subsequently transferred to the case of a zonal vortex layer for 
Rossby waves [13, 17, 18]. 

One of the most common approaches to explaining the formation of vortices 
and meanders in the ocean is the mechanism of barotropic-baroclinic instability. 
This mechanism implies that the most unstable mode is first found in the linear 
problem, then the nonlinear stage is analyzed, and as a result, localized vortex 
solutions of the “Kelvin’s cat’s eye” type are obtained [8–10]. With this approach, 
the following situation is realized: the external force generates only a large-scale 
flow, but cannot generate wave disturbances. 

In our work, we propose an alternative option for the coexistence of large-
scale flow and wave formations. Its essence is extremely simple: both 
the stationary shear flow and the wave formations themselves are the results of 
the action of an external force. That is, an external force not only generates a large-
scale background current but at the same time is also responsible for the excitation 
and maintenance of neutral wave formations. 

 
The purpose of the study and problem statement  
The main result obtained by generalizing the vortex layer to the β-plane 

consists in the fact that neutral solutions do not appear in this case, i. e. the vortex 
layer in the strictly zonal case on the β-plane has no neutral eigensolutions, and 
the two unstable obtained modes are the legal successors of known varicose and 
sinusoidal modes. In this paper, we not only generalize the problem of a vortex 
layer on the β-plane to the non-zonal case but also show that it is precisely non-
zonal that gives the effect of pure radiation. 

The main difference of this approach is in a type of boundary conditions at 
infinity. When constructing a mode, the damping condition at infinity is imposed, 
at which the solution strictly tends to zero. The formulation of the Miles – Ribner 
problem requires the solution to be bounded at infinity, and the condition of 
radiation from a vortex layer is used. In our opinion, this approach is physically 
more understandable, since when it is used, the vortex layer mode becomes 
a particular case of this formulation. 

Thus, the aim of the study can be briefly formulated as follows: in order 
to obtain a generalization of the vortex layer problem to the non-zonal case on 
the β-plane. 
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Main equations and analysis of solutions 
We consider the linearized vorticity equation for the stream function in 

( ) ( )  ei k x ctу −Ψ = Φ , where k is the longitudinal component of the wave number; с 
is a longitudinal component of the phase velocity; Φ  is a stream function, the x-
axis is directed along with the flow, the y-axis is perpendicular to the flow; t is 
time. In what follows, the longitudinal components (k, c) will be invariants of the 
problem. The transverse component of the wave number for the incident wave will 
also be set and assumed to be fixed. The transverse components of the wave vector 
of the refracted and reflected waves will be found from the dispersion relation 
taking into account the radiation condition. The group velocities of the refracted 
and reflected waves are directed from the tangential discontinuity. The amplitude 
of the incident wave will be considered equal to unity, and all further calculations 
will be normalized to this value. The amplitudes of the refracted and reflected 
waves will be found from the matching conditions. The jump in the step of the 
background flow velocity profile will be considered the variable parameter. 

The linear equation of Rossby waves on a shear flow has the form [14] 
 

( )
2 2 21

ββ 0yy
yy y

Ui k F
U ck U c

   −
Φ + Φ + − − Φ =      −−   

                     (1) 

 

where 2 β β cosθ= , 1 β βsin θ= , θ  is an inclination angle of the barotropic plane-
parallel flow to the parallel; U is a flow rate; 2  F are the eigenvalues of the vertical 
problem. Then, for the case of constant stratification in the absence of topography, 
we have the standard expression 
 

( )22
2

2 2

π
 ; 0, 1, 2, ...

f n
F n

N H
≡ = , 

 

where N is Väisälä – Brunt frequency; f is the Earth rotation frequency; H is 
a depth. 

The connection conditions can be derived strictly mathematically, following 
the formal procedure [8]. The stitching conditions are as follows [14] 

 

( ) 1

0,

β 0,y y

U c
iU c U
k

 Φ ∆ =  − 


 ∆ Φ − −Φ + Φ =   

                                               (2) 

 

where ∆ is a classical jump of values through the vortex layer. 
In the Miles – Ribner formulation, we connect three functions: an incident 

wave of unit amplitude and two waves – a reflected one, with a reflection 
coefficient R, and a transmitted one, with a transmission coefficient T. The group 
velocity of the incident wave is directed towards the step, and the reflected and 
refracted waves have the group velocity directed away from the step (figure). Since 
the background flow is considered longitudinally homogeneous and stationary in 
time, we have two cyclic variables that generate two invariants (integrals of 
motion) – the longitudinal wavenumber and the wave frequency. 
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Vortex layer on the non-zonal flow. Incident (yellow arrow), refracted (green arrow), and reflected 
(red arrow) waves 

 
So, we are looking for a solution (2) in the form 
 

( ) ( )
( )
1 0

2

exp exp ,

exp ,

i l y R i l y

T i l y

Φ = +

Φ =

                                 (3) 

where l1, l0, l2 are transverse components of the wave number of the incident, 
reflected and refracted waves, respectively. For a self-adjoint operator, in the case 
of a purely zonal vortex layer, the components of the wavenumber 10, 11 were 
linked by the relation l0 = –l1. In our case, the self-adjoint property of the operator 
is absent, and the symmetry property for Hermitian operators disappears. In this 
case, we have the following dispersion relation: 
 

( )2 1
2 2 2

β β
ω

k l
kU

k l F
−

= − +
+ +

                                             (4)  

 
where ω is a wave frequency, ω = kc. 

Further, the dispersion relation (4) will be rewritten in the following form: 
 

( ) ( ) ( )

2

2 21 1 2β β β
2 ω 2 ω ω

kl k F
kU kU kU

 
= ± − − −  − − −  .                      (5) 

PHYSICAL OCEANOGRAPHY   VOL. 28   ISS. 5   (2021) 491 



 

Choosing a sign for the root is determined by the direction of the group 
velocity in the transverse direction. Then the expressions for the components of 
the group velocity have the form 

– in the transverse direction 
 

( )
( )

2 2 2
2 1

. 22 2 2

2β βω
gr y

k l l k F
С

l k l F

− − −∂
= =
∂ + +

; 

– in the longitudinal direction 
 

( )
( )

2 2 2
2 1

. 22 2 2

β 2βω
gr x

k l F k l
С U

k k l F

− − −∂
= = +
∂ + +

.

 
 
Substituting expressions (3) into formulas (2), we find the following 

expressions for the refraction T and reflection R coefficients: 
 

( )( )( )

( ) ( ) ( )

( ) ( ) ( )

0 1 1 2

2 2 1
1 1 2 2 1 2

2 2 1
1 0 2 2 1 2

/ ; / ;

;

β ;

β .

T A C R B C

A l l U c U c

B U c l U c l U U
k

C U c l U c l U U
k

= = −

= − − −

= − − − + −

= − − − + −                            (6) 

 
A qualitative analysis of the obtained relations demonstrates the fact that if 

the jump of the background flow velocity field ( )1 2 0U U− → , then R → 0, T → 1. 
Note that the presence of a reflected wave in the solution does not detract from 
the generality of the approach, even when the step value is zero. The fact is that in 
this case, the reflection coefficient is zero, and then the reflected wave is 
automatically excluded. 

Analytically verifying the existence of the motion integral, as was done in 
[13], is rather difficult. However, there are no obstacles for numerical modeling 
along this path. It is easy to see that the integral is not actually conserved. To see 
this, it is enough to consider the case when the denominator of the refractive and 
reflection indices vanishes. Mathematically, this situation is called a pole. 
The poles of refraction and reflection coefficients are sometimes interpreted as 
eigenmodes of the vortex layer. In the physical sense, this means that there is 
a wave of unit amplitude incident on the vortex layer and two waves of infinite 
amplitude propagating from the vortex layer in different directions. 
An infinitesimal “seed” wave incident on the vortex layer will cause 
a disproportionate response in the form of reflected and refracted waves. 
In particular, one of the solutions may be a wave propagating upstream in 
the opposite direction (see the Appendix). 
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For the classical vortex layer and the vortex layer on the β-plane in the zonal 
case, there are no solutions with poles on the real axis. More precisely, formally, of 
course, the poles exist, but they lie in the complex plane. In contrast, for the non-
zonal case, such a solution with a pole on the real axis exists. 

In the general case, due to the absence of symmetries in the problem, it is 
necessary to consider eight variants of the wave incidence on the vortex layer, 
which is a one-dimensional flow of the “step of infinite length” type. In this work, 
we will restrict ourselves to analyzing only one case. 

Let the vortex layer region be divided into two parts: region I (located in 
the lower part of the step) and region II (in the upper part of the step). Let the wave 
fall from the bottom to the top (Figure). We will demonstrate that in this situation 
a pole on the real axis exists. 

Let both velocities be positive, while 2 1 12δ 0U U− ≡ > . Then, in dimensionless 
form, we obtain the equations 

 

( ) ( )( )2 2 2 2 2 21 2
1 1 2 1 1 1 1/ δ , γ / , 2δ , β / 2 δ

2
U Uc c k k F U U s k F+ = − ≡ + − ≡ = + 

 
(7) 

 

( )

( )

1/22
2 2 21 1 1

1
1 1 1

1/22
2 2 21 1 1

1 1
1 1 1

sin θ sin θ cosθ1 γ 2γ
1 1 1

sin θ sin θ cosθ1 γ 2γ 4 sin θ 0.
1 1 1

s s sc
c c c

s s sc s
c c c

     + + − − −   + + +   
     − − − − − − =   − − −   

  (8)

 
 

The “plus” and “minus” signs in front of the root in different lines of formula 
(8) correspond to reflected and refracted waves, respectively: plus in the top line 
gives negative group velocity along the y-axis (reflected wave); the minus in 
the second line gives a positive group velocity (refracted wave). It is easy to see 
that if the inclination angle of the flow is equal to zero (sin θ = 0), i. e. the flow is 
zonal, then squaring equation (8), we obtain exactly the cubic equation (5) from 
[17, p. 108]: 3 2

0 0 0 0 01.5 0.5 0c s c c s+ + + = , which is at the same time 
a generalization of equation (2.6) from [11, p. 85], while s is the dimensionless 
parameter from [18] and is related to the dimensionless parameter a from [11] by 
the relation a = 4s. The physical meaning of formula (8) is as follows. If the flow is 
zonal, then, as shown analytically in [17], the interaction of the vortex layer with 
the waves occurs within the enstrophy conservation law, that is, the enstrophy of 
the incident wave is equal to the sum of the reflected and refracted waves fluxes. 
There is a redistribution of enstrophy between three waves: incident, reflected, and 
refracted, but the total enstrophy does not change. 

It is known that for a zonal flow, the consequences of the enstrophy 
conservation law and the energy conservation law coincide due to the degeneracy 
of the zonal problem [5]. The refractive and reflection coefficients have no poles 
on the real axis, the denominator is C ≠ 0, therefore, no modes corresponding to 
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pure radiation [12] are observed, and the poles lie in the complex plane. This 
means that for a strictly zonal flow different approaches give the same result: 1) 
a continuous profile of the background flow velocity and 2) a piecewise smooth 
vortex layer, i.e. the enstrophy conservation law as well as the energy conservation 
law are fulfilled, and the interaction between the flow and wave disturbances are 
absent. 

The enstrophy conservation law is not satisfied for a non-zonal flow for 
a vortex layer. We demonstrate this with a simple example. For simplicity, we 
assume that the incident wave moves from below from region I, where 
the background flow velocity field is zero, to region II. For further analysis, 
for simplicity of calculations, the following initial parameters were chosen: 
cos θ = 0.6; sin θ = 0.8; .1ω;10β;5.0;12 ==== kF From the dispersion 
relation (6) we obtain the transverse components of the wave number:

1 04 11.75 0.57; 4 11.75 7.43l l= − ≈ = + ≈ . In accordance with the radiation 
condition, we choose a minus in front of the root in expression (6) for 
the transverse component of the wave number of the refracted wave. Then at 

0U = we get the following set of parameters: 
 

2 . 1 . 24 11.75 0.5721; 4.346; 4.346;gr y gr yl C C= − = = =

. 0 0.1215; 1; Ref 0; 7.42gr yC Tr C= − = = = . 
 
A simple check confirms that the incident and reflected waves have the values 

of group velocities along the transverse coordinate, which are opposite in sign. 
With a gradual increase in the step to 1.856U =  value, the denominator C 

remains positive, C → 0. We find 2 . 20.3876; 5.673; 0.0072gr yl C C= = = ; 
272; Ref 3770Tr = = . Note that the reflection and transmission coefficients have 

already increased by three orders of magnitude (!). 
At a value 1.857U = , the denominator of C is already negative: C < 0. In this 

case 2 . 20.3875; 5.674027; 0.0082gr yl C C= = = − ; 228; Ref 3184.Tr = − = −
The effect appears before the critical layer arises in the problem, from which it 
follows that the waves under consideration are not the waves of negative energy. 
At the selected parameters (ω = 1, longitudinal component k = 0.5), the phase 
velocity in the longitudinal direction is 2. 

We carry out the calculation for the same parameters using the dimensionless 
equation (8): we find 2γ 0.2=  at 1.856U = . Then we get s = 4.3103, and the left 
side of (8) takes a positive value of 0.00373. At 1.857U =  we get s = 4.3080, and the 
expression takes on a negative value (–0.01148). Therefore, the root of 
the equation is between these values and, most importantly, it exists. 

If the parameter β is reduced, then in the calculation it turns out that the pole 
appears at a smaller value of the step. The calculation gives the following figures: 
β = 10 at 1.857U = ; β = 9 at 1.8331U = ; β = 7 at 1.7546U = . 
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If we take the barotropic case 02 =F , then the pole still exists, but already for 
smaller values of the velocity jump. 

If the wave falls not from the south, but the north, then with the same 
parameters but for an inverted step there is no pole, the denominator does not 
vanish, which again demonstrates the absence of symmetry properties in 
the problem, which, as it is easy to see, is due to the last, non-zonal term in 
equation (7). The critical value of the step size is much larger and lies behind the 
critical layer: 

 
2.935; 0.6; 1; 0.5; 10; ω 1;U s p k b= − = = = = =  

 

0.0089935; 1881; Ref 761;C Tr= − = =  

. 1 . 0 . 20.0121505; 0.4346225; 0.0371691gr y gr y gr yC C C= − = = −  
 

We note the following circumstance. For the non-zonal case, these results are 
a consequence of the fact that expression (1) is not a Hermitian operator, in 
contrast to the zonal case. Perhaps this fact is the key to understanding the results 
obtained in this problem. 

 
Conclusion 
We have demonstrated that for a non-zonal flow interacting with Rossby 

waves, there is a new class of solutions that can be interpreted as pure emission of 
Rossby waves by a non-zonal flow. This approach will eliminate the resulting 
confusion in terminology when instabilities are called radiation, and radiation – 
pure radiation, while the authors, using the term “radiation”, actually analyze 
the instabilities. 

In other words, the novelty of our work is as follows. When analyzing the non-
zonal case of a linear problem, many authors came, in fact, to the same conclusion: 
unstable solutions become more unstable and all theorems and constraints on 
instabilities for the zonal case cease to be true in the non-zonal case [17]. We have 
demonstrated that in the non-zonal case there is a completely new class of solutions 
that is absent in the zonal case. We have also shown that it is precisely the non-
zoning that gives the effect of pure radiation. This class of solutions corresponds to 
the classical definition of radiation, in contrast to unstable solutions, incorrectly 
called radiation. 

 
Appendix 

On non-zonality of vortex layer  
The vorticity equation on the β-plane in the coordinate system rotated by 

an angle θ to the parallel has the form 
 

( )2 1 β cosθ sin θ 0h
h z

z

d y x
dt S

  ∇ Ψ + Ψ + + =    
.                   (A.1) 

 
We will look for solutions in the form 
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0( , , ,θ, ) ( , ,θ)x y z t y zΨ = Ψ .                                     (A.2) 

 
Substituting expression (A.2) into formula (A.1), we obtain 
 

0 ( , ,θ) βsin θ 0.y z
y

∂Ψ
=

∂
                                       (A.3) 

 
It follows from the equation (A.3):  
1) if the angle θ is equal to zero (the x-axis is directed along the parallel – the 

case of zonal flow), equation (A.3) is fulfilled for any function 0 ( , ,θ).y zΨ  
Consequently, any plane-parallel stationary flow is a solution of the nonlinear 
vorticity equation on the β-plane. The result is well known [8]; 

2) if the angle θ is not equal to zero (the x-axis is not directed along the 
parallel – the case of a non-zonal flow), then there are no nontrivial solutions. 

Consequently, for the existence of a non-zonal plane-parallel stationary flow 
within the framework of the nonlinear vorticity equation on the β-plane, 
the presence of an external force is required, i.e. we must include some external 
force in the right-hand side of equation (A.3). Consequently, in the original linear 
equation in the non-zonal case (1), the dependence ( )U U F= is implicitly 
assumed. This means that from equation (1) it follows that linear wave solutions 
depend on an external force, that is, not only the non-zonal flow itself but also 
the wave solutions for the non-zonal case are the result of the direct action of 
an external factor. 

Thus, if the vortex layer is purely zonal, and the linear operator is self-adjoint, 
then small perturbations depend on the profile of the large-scale flow and are 
unstable. If the vortex layer is not zonal, then the linear operator is not self-adjoint, 
and then the external force determines the shear stationary flow and wave 
disturbances. 

The influence of an external force for the non-zonal case is not limited only to 
the action of a large-scale flow. When waves interact with a large-scale stationary 
flow, upon reaching a certain threshold value, a new class of solutions appears, 
which can be interpreted as flow radiation, or as a direct generation of wave 
disturbances by an external force. This result explains how a non-zonal jet flow and 
wave formations moving in the opposite direction can exist simultaneously. 

This problem, even in a simple formulation, requires further analysis. 
In particular, it is necessary to consider physically more realistic velocity profiles 
e. g. like “hat” (rectangle). 
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