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Purpose. Despite of a relatively short history of marine systems modeling, which started in late 
1960s – early 1970s, this discipline is developing quite intensively. Publications on marine system 
modeling number in the thousands. The purpose of the article is to review the achievements 
accumulated in this field. The main attention is paid to the general principles in marine systems 
modeling, and to the spectrum of the applied modern approaches. The results of analysis of more than 
200 sources, i.e. research papers, monographs, sections in books, internet-resources, are summarized 
in the paper of two parts published separately.  
Methods and Results. Over the past decades, our understanding of the patterns of marine ecosystems 
functioning has increased significantly, as well as the possibilities of ecological monitoring and 
information technologies. At the same time, the increasing number of global and regional 
environmental programs and projects in the field of rational use of marine resources, protection of 
marine ecosystems, and assessment of the climate change impacts has resulted in growth of demands 
for quantitative tools providing the ecosystem-based support of the initiatives in rational management 
of sea resources. This, in its turn, has required more complex multi-component models and led to 
significant increase in the number of such models. The first part of this review is focused on the end-
to-end models which represent the complex integrative tools assisting in taking correct decisions for 
rational management of marine resource.  
Conclusions. Providing testing of scenarios “what, if”, the end-to-end models are the effective 
modeling instruments for assessing the consequences of climatic and anthropogenic impacts on all 
the trophic levels of marine ecosystems including bio-geo-chemical cycle, microbial loop, and various 
kinds of detritus. These models are not intended for taking tactical decisions (in such cases, local 
object-oriented sub-models should be used), but they are indispensable instruments in strategic 
planning and complex assessing of the management strategies.  
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Dedicated to the memory of academician 
I.I. Vorovich 

All models are wrong, but some 
models are useful. 

G. E. P. Box 

Introduction 
Mathematical modeling, which has become the most important instrument for 

understanding the quantitative patterns of the structure and dynamics of marine 
ecological systems, requires the integration of hydrophysical, hydrochemical, and 
hydrobiological aspects of their functioning, i.e. the ecosystem approach. If in 
the early stages of development the main attention was focused on methodological 
and theoretical aspects, then in the last 20–30 years, mathematical models of 
marine ecosystems have largely acquired an applied focus and have become widely 
used to forecast and manage the state of the marine environment and marine 
populations [1–4]. 

Historically, the modeling of marine ecosystems has developed in the three 
abovementioned directions relatively independently. The best theoretical base was 
initially available in the modeling of hydrological processes described by 
the classical equations of continuum dynamics, in particular, the Navier–Stokes 
system of equations or its modifications. Further development was directed 
towards modeling the interaction between the ocean and the atmosphere, oceanic 
circulation, internal waves, the influence of climatic processes, etc. 

Difficulties in modeling hydrophysical processes were largely related to 
computational difficulties, which were gradually overcome due to the progress in 
the field of numerical methods and computer technology [5–9]. In modeling 
the hydrochemical regime, it is also possible to use a ready-made mathematical 
apparatus – the system of Navier–Stokes equations should be supplemented by 
the system of advection-diffusion equations [10]. In this case, three relatively 
independent directions of modeling can be distinguished. 

In the sea gulfs into which large rivers flow, and in the estuarine-type seas, 
like, for instance, in the Sea of Azov, it becomes necessary to simulate the salt 
regime in combination with the water balance equations. 

The most difficult problem is modeling the dynamics of biogenic elements, 
primarily nitrogen and phosphorus compounds, which are represented by mineral 
forms, dissolved and suspended organic matter, as well as the oxygen regime [11–
13]. But here, too, the attempts to supplement the equations of hydrodynamics and 
advection-diffusion with terms describing the hydrochemical regime [14] are being 
made. The complexity of modeling the biogenic cycles is due to the fact that they 
are directly related to primary producers and decomposers, which is why 
the biogeochemical transformation of biogenic elements should be considered 
within the framework of the so-called primary cycle [15, 16]. 
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The third direction in modeling the marine environment hydrochemistry is 
represented by the models of the distribution and transformation of pollutants. 
The greatest attention here is paid to oil pollution, the causes of which are oil spills 
in connection with accidents of oil tankers and offshore platforms. The modeling of 
the transport and diffusion of radioactive isotopes is also of interest. Eutrophication 
processes, which are especially relevant for estuaries and sea gulfs affected by 
large rivers, are usually modeled within the framework of the primary circulation. 

The totality of the ecosystem’s biological links is the most complex object for 
modeling. The complexity is associated not only with the species diversity of 
organisms inhabiting marine water bodies, but also with an extremely wide range 
of their sizes, various methods of reproduction and nutrition, movement in space, 
and various behavioral reactions. This makes it extremely difficult to create multi-
component models within the framework of unified mathematical structures, 
represented mainly by differential and difference equations. Nevertheless, the work 
in this direction is being carried out quite actively, including within the framework 
of the so-called end-to-end models [17]. 

By definition, a marine ecological system’s model must include all 
the components discussed above. The first attempts to create such full-system 
mathematical models of marine ecosystems began back in the 1970s of the last 
century, immediately after the appearance of electronic computing machines that 
were quite productive for those times, the creation of algorithmic languages and 
libraries of applied programs. One of the first experiments of this kind was 
the development of the Sea of Azov simulation system, which included 120 state 
variables in each of seven spatial compartments [18–20]. Due to the significant 
speed and memory limitations of the computing systems of that time, this model, in 
fact, implemented the principle of splitting by physical processes, as well as 
the block principle. 

It is clear that a complete marine food web cannot be practically covered by 
one general model. There are many models that have been developed for individual 
isolated parts of the food web. For such models, associations with an upper or 
lower trophic level should be parameterized accordingly. 

This can also be carried out within the framework of the block (and actually 
systemic, cybernetic) principle, which is widely used both at the intuitive and 
formal levels and represents the ecosystem in the form of separate subsystems, 
the connections of elements within which are much closer than with elements of 
other subsystems. Thus, it is possible to split the ecosystem into separate blocks, 
which greatly facilitates the modeling possibilities. In particular, such blocks 
as external circulation, primary circulation, secondary circulation, block of higher 
trophic levels can be distinguished in the marine ecosystem [21]. In recent 
years, the so-called NPZD models (N – nutrient, P – phytoplankton, Z – 
zooplankton, D – detritus), including multispecies planktonic communities, have 
become widespread [22]. 

Ecosystem models can be characterized by their complexity, i.e. the number of 
state variables and the detail degree of the processes. Models with more state 
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variables do not automatically outperform those with fewer state variables. 
The greater the number of variables, the higher the requirements for understanding 
the processes and the presence of quantitative characteristics. Moreover, not every 
problem requires a high resolution, and the use of aggregated state variables may 
be sufficient to answer specific questions. Thus, when modeling marine 
ecosystems, one should strive to achieve optimal complexity based on the purpose 
of the study [23]. 

A systematic approach to modeling relies on the possibility of aggregating 
populations similar in terms of food spectrum and other characteristics, which 
provides a gradual increase in the complexity of models as relevant information is 
accumulated. 

Models are also characterized by spatial resolution, ranging from zero-
dimensional compartmental (box) to advanced three-dimensional (3-D) models. 
In compartmental models, physical processes are greatly simplified, while 
the resolution of chemical and biological processes can be quite detailed. Such 
models are easy to manage and can serve as a working instrument for solving 
practical problems in the first approximation, especially in a situation where 
a stable system of currents is observed in a basin or when previously observed 
water exchange scenarios can be set [24, 25]. 

The next step is one-dimensional (1-D) water column models that emphasize 
the vertical heterogeneity of the physical-chemical and biological characteristics of 
the marine environment. This heterogeneity is caused, in particular, by 
the thermocline effect, the vertical profile of photosynthesis, etc. Such models can 
be especially useful in the case of weak horizontal advection. 

In order to effectively couple biological models with full circulation models, it 
is desirable to reduce the complexity of the biological description as far as is 
reasonable. It is interesting that an increase in the detail of the description of 
the spatial behavior of animals in continuous systems of the taxis–diffusion–
reaction type provides the use of simpler models of local population kinetics [26–
28]. An extreme case of a simplified biological description in combination with 
a circulation model are the models of the trajectories of movement of individual 
populations, individuals, or cells, which are considered as passively drifting or 
actively moving particles. Such an individually-oriented approach (Individual-
Based Model, abbr. IBM) has become increasingly common in recent years when 
modeling populations of marine animals of different trophic levels [29–34]. 

Many of the advances in marine ecosystem modeling over the past 20 years 
have been driven by advances in computer technology (high processing speed, 
virtually unlimited memory, multiprocessor technologies, new visualization 
capabilities including animation, geographic information systems and space 
monitoring, web services, etc.). Informational technologies have made it possible 
to increase the spatial resolution of models and cover large areas of water. This has 
provided a greater use of high-dimensional models (such as dynamic 3-D models) 
and increased their complexity by raising the number of components and processes. 
For example, for improving the specification of boundary conditions and detailing 
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of models by splitting biogeochemical processes and the transport process [35], to 
increase the computational speed [36], to improve the quality of interactive 
visualization [37], to use more powerful statistical modeling instruments and more 
powerful instruments for post-processing of modeling results. 

It is impossible to cover all the directions and aspects of marine ecosystems’ 
mathematical modeling within the scope of a limited review. The main attention in 
the work is concentrated on the general principles of those areas of the spectrum of 
modern approaches to the modeling of marine systems, which, in our opinion, are 
not widely represented in the domestic literature. 

The first part of the review is devoted to end-to-end models – complex 
integrative tools for supporting initiatives to manage the sustainable use of marine 
resources based on an ecosystem approach. End-to-end models involve 
consideration of all the main processes associated with water bodies. Of the abiotic 
factors, they include the supply of substances from the watershed and from 
the atmosphere, hydrophysical processes. From an ecological point of view, they 
cover all trophic levels, including the biogeochemical cycle, the microbial loop, 
and various types of detritus. The ability to run “what-if” scenarios makes end-to-
end models a useful instrument for identifying effective options for managing 
marine ecosystems, including ecosystem-based fisheries management, and 
assessing the impacts of climate change.  

 
End-to-end models 

Over the past few decades, understanding of the patterns of marine 
ecosystems’ functioning has increased significantly, as well as the possibilities of 
environmental monitoring and computer technology. At the same time, due to the 
increase in the number of global and regional environmental programs and projects 
in the field of marine use and marine environment protection, the demand for 
quantitative tools to support initiatives for managing the sustainable use of marine 
resources based on an ecosystem approach has raised. This has led to a demand for 
more complex multi-component models and a significant increase in the number of 
marine ecosystem models. 

As the number of these extended models grew and involved more and more 
system components, including anthropogenic ones, the term “end-to-end modeling” 
was adopted to distinguish it from environmentally-oriented models [38]. 

End-to-end models are currently a key instrument for implementing an 
ecosystem approach to marine management [39–42]. These models are usually 
developed to assess the level of our knowledge about ecosystems, to study 
the structure and functioning of ecosystems, and to test the response of ecosystems 
to human and climate impacts [43–44]. The ability to execute “what if” scenarios 
also makes end-to-end models a useful instrument for identifying effective options 
for managing marine ecosystems, notably in the field of fisheries management 
based on an ecosystem approach [45, 46]. 

End-to-end models imply taking into account all the main processes associated 
with water bodies. Of the abiotic factors, they include: watersheds, the input of 
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substances from rivers and from the atmosphere; various hydrophysical processes 
in marine water bodies, taking into account vertical and horizontal zoning. From an 
ecological point of view, they go beyond the scope of lower or higher trophic 
levels and include: nutrient and biogeochemical cycle, benthos, microbial loop, 
various types of detritus, pelagic and benthic primary producers, jellyfish, 
cephalopods, fish, functional or morphological groups (that cover the entire food 
web), as well as specific aquatic groups such as sharks, rays, marine mammals, 
seabirds and marine reptiles. 

In response to the desire to move towards an ecosystem approach in 
the management of marine resources, end-to-end models that represent the entire 
food web and physical components of an ecosystem at a fine spatial scale [47–48] 
have been developed. Ultimately, end-to-end models should, in a broader sense, 
also include humans as the highest trophic level, responding and adapting to 
changing conditions [49, 50]. 

Due to the urgency of the problem of climate and environment change, there is 
a growing interest in the models of marine ecosystems that include climate 
descriptors, since it affects the higher trophic levels [47, 51]. These models usually 
combine submodels of physicochemical oceanographic processes with population 
models into a single modeling framework [52]. Currently, there are a significant 
number of such projects, including OSMOSE [53], Ecopath with Ecosim (EwE) 
[54], SEAPODYM [55–57], APECOSM [58], InVitro [59]. 

One of the most comprehensive and well-documented projects for creating 
end-to-end models of marine ecosystems is Atlantis [60–64]. Atlantis is a spatially 
distributed deterministic end-to-end model designed for exploited marine 
ecosystems. It consists of four blocks: biophysical, fishing, management and socio-
economic. Atlantis has been used to study the main processes and reactions in 
aquatic ecosystems [65–66] and to evaluate management strategies [67]. 
In addition to traditional modeling objects, Atlantis includes whales and seabirds, 
takes into account fishing and other types of anthropogenic activities that affect 
the ecosystem [61]. 

The paper [68] describes the result of the Atlantis parameterization for 
the ecosystems of the North and Barents Seas (NoBa). The model coverage area is 
1,600,000 sq. km and it covers the territory from Greenland through Icelandic 
waters to the Faroe Islands. The oceanic region is divided into 51 spatial 
compartments, each of which has several layers. In total, 52 functional groups are 
considered in the model: 20 groups of fish (8 at the species level), 5 groups of 
mammals, 1 group of sea birds, 16 – of invertebrates, 5 – of primary producers, 2 – 
of bacteria, and 3 – of detritus groups. The model is expected to be an important 
instrument for modeling human impacts and testing management strategies, but 
the main area of application will be to study how the two most important factors in 
these high latitude ecosystems, climate and fisheries, interact and affect 
the management strategies. In the FAO materials [43], the Atlantis model was 
noted as the best one for carrying out “what if” scenario experiments. 
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Different ecosystem models (for example, Atlantis and EwE ones) for the 
same territories can give conflicting results [69–70]. This is due to the fact that 
the modeling process is largely subjective since the formalized estimation of 
parameters is hindered by the complexity of the models and the lack of data for 
identification. Because of this, the models are usually manually calibrated against 
historical data. This is a source of potential uncertainty in the models, and their 
verification (against past observations) and validation (against predicted data) serve 
as the main means of determining adequacy and reliability, that is, how well they 
fit existing data and are able to make correct predictions [44]. 

In this regard, the results of a study of the Atlantis NoBa model quality and 
reliability are presented in [71, 72]. The challenge is to compare the outputs of 
the model with the available data, as well as to investigate how sensitive the output 
is to changes in parameters, and to use sensitivity analysis to understand the system 
dynamics. A sensitivity study found that saithe, sea bass and catfish had 
the greatest impact on other groups in the ecosystem. The model was able to 
reconstruct time series of biomass and catch for major commercial populations and 
showed that supply process modeling is particularly important for some groups. It 
is concluded that this model provides a solid basis for evaluating alternative 
fisheries management scenarios and provides reliable results for the most important 
commercial populations. 

Most ecological models are based on the general approach consisting in 
the fact that all biological components are aggregated into functional groups that 
represent the ecosystem in terms of the totality of elemental biomasses, rather than 
individual organisms or species. Marine ecosystems are complex non-linear 
systems with emergent behavior that is not simply a function of their physical 
environment. Therefore, an ecosystem model should ideally have sufficient 
ecological flexibility to allow this behavior to occur. However, in most available 
models, food webs and food chains are fixed, and interactions are defined with 
predetermined parameters that are highly dependent on the way functional groups 
are aggregated. Such models reflect trophic interactions and may take into account 
adaptation to the physical-chemical environment, but are limited by the inability of 
a fixed food web to self-organization. 

The Individual-Based Model (abbr. IBM) paradigm is an alternative approach 
in ecology and evolutionary theory for understanding fundamental ecosystem 
processes and complexities [29, 30, 32, 73], which cannot be fully implemented 
using traditional models based on equations. The IBM approach focuses on 
bottom-up construction and on explaining how macro-phenomena arise as a result 
of relatively simple local interactions of organisms [74]. According to this 
paradigm, individual organisms manifest unique autonomous properties. These 
properties are first specified in the formulation of the model and later in its design 
and computer implementation, and should be present at IBM as important aspects 
of differentiation. 

IBM-based models are more flexible than any other type of model in 
representing processes such as movement through space, growth, genetic 
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inheritance, and evolution. This makes them a suitable instrument for addressing 
a range of issues from small-scale interactions [75] to the consequences of the non-
stationarity of the natural environment affected by climate change [33, 76]. 

There are already quite a few implementations of such end-to-end models that 
use the principles of individually-focused modeling, which incorporate decision-
making algorithms to reconstruct the behavior of individuals, and which are 
extended in such a way that various components can be implemented using 
different types of models, including classic IBM models, as well as metapopulation 
models based on difference or differential equations. In this way, the most efficient 
means of representing the various parts of a system can be combined to create 
an efficient model of the entire system. OSMOSE [53] and InVitro [59] are 
examples of such individualized models. They dynamically integrate the age 
structure of fish populations and IBM-based trophic interaction models, plankton 
models, hydrodynamic models, habitat models, various types of anthropogenic 
impact. 

OSMOSE is mainly focused on environmental and fishery issues [77–79], 
while InVitro is focused on managing a wide range of human activities – from 
commercial and recreational fishing, tourism, shipping, oil and gas production to 
wastewater discharge, mining minerals, coastal and port development, regional 
economy and infrastructure [80–83]. 

In [84], a system of end-to-end modeling of marine ecosystems based on 
individually oriented models is proposed. It is capable of processing and combining 
biological and behavioral models and strictly corresponds to the physiological 
functions of nutrition, growth, and metabolism of organisms. In addition, this 
model includes the exchange and transfer of mass and energy through local 
interactions at all trophic levels (from the lowest to the highest), the physical 
environment, and anthropogenic activities. 

As computing power increases and many types of process-based models 
evolve, more and more end-to-end modeling platforms, combining different types 
of models, emerge. While some model types, such as EwE and Atlantis, have 
the ability to interface with other models, other end-to-end modeling structures are 
mainly formed by connecting or combining models of different types. 

One approach is to combine aggregated versions of existing models of upper 
trophic level food chains with NPZD type models and with a simplified 
representation of basic physical processes [85–87]. The main question is, can 
the use of functional groups, rather than individual views, as state variables ensure 
that adequacy and realism are maintained? 

An example of such a hybrid approach to integrative modeling, covering many 
aspects, from fisheries to plankton and from shelf seas to the open ocean, can be 
found in [88]. Within the framework of EURO-BASIN, three configurations of 
the general physical model (Nucleus of a European Model for the Ocean, NEMO) 
are combined here [89]; three biogeochemistry and lower trophic level models 
(ERSEM, MEDUSA, and PISCES); an individually tailored regional scale model 
for zooplankton, coupled with a size-based herring model that aims to represent 
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the impact of the combined effects of environmental variability and fisheries on 
the structure and dynamics of pelagic ecosystems (APECOSM) [58, 90], as well as 
a spatial model of population dynamics (SEAPODYM) [55–57], which predicts 
the impact of the environment and fishing on key pelagic species and includes 
a functional representation of the middle trophic level populations [91], which 
serve as a food base for large oceanic predators (tuna, marine mammals, seabirds). 

In conclusion, it can be noted that end-to-end models, such as Atlantis, are 
becoming an increasingly important tool in ecosystem studies, as well as in 
the development and testing of system management strategies [48]. These models 
should not be used when making tactical decisions [92]: in this case, local object-
oriented submodels work better. At the same time, end-to-end models are a useful 
tool for strategic planning of marine use and changing approaches towards 
ecosystem management of fisheries [46]. Models of this type can also be used for 
the complex evaluation of scenarios of alternative control strategies [46, 93]. 

In recent years, the main trend is related to the development of more complex 
models of marine ecosystems; here are two examples of large international 
projects: Fish-MIP v1.0 [94] and VECTORS [95].  

The Fish-MIP v1.0 project aims to intercompare fisheries and marine 
ecosystem models, standardize input variables as much as possible, to analyze, 
compare and disseminate the results of multiple models to assess climate and 
fishery impacts on marine ecosystems and the services they provide, such as 
potential future fish catches. The scope of the Fish-MIP v1.0 project is global and 
regional models of fisheries and marine ecosystems capable of making historical 
(∼ the 1950s and beyond) and medium-long-term (defined here as ∼ 2030–2100) 
forecasts of the structure, ecosystem dynamics, and functioning using the same set 
of climate change scenarios and expected fishing efforts. 

In the long term, the results of the Fish-MIP project are intended for users 
interested in assessing long-term changes in the global and regional environment 
and developing future policies, such as the Intergovernmental Panel on Climate 
Change (abbr. IPCC), an Intergovernmental Platform on Biodiversity and 
Ecosystem Services (abbr. IPBES) and United Nations Working Groups on 
Sustainable Development Goals (abbr. SDGs).  

The European project VECTORS (URL: https://www.marine-vectors.eu/) is 
a large-scale project aimed at a comprehensive study of the Baltic Sea, Northern 
Sea, and western part of the Mediterranean Seas. The focus of the project is 
the significant changes taking place in these seas, identifying the causes of 
the changes, and analyzing the consequences they will have. More than 200 
research experts from 16 different countries are participating in the project. 

Numerous pressures, such as climate change, eutrophication and pollution, 
harvesting of biological resources, habitat change, and introduced/invasive alien 
species are causing fundamental changes in marine ecosystems. Various activities 
in shallow coastal areas (e.g. dredging for shipping, bottom trawling, construction 
of wind farms, construction of artificial reefs, fish and shellfish aquaculture) cause 
direct physical alteration of benthic habitats with harmful (or beneficial) short-term 
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and potentially long-term consequences for local biota. It is critical to develop 
instruments that can project future changes and provide decision-makers with 
sufficient information on how best to manage natural systems. 

A critical review [95] showed the modern state of existing approaches to 
marine ecosystem modeling that are applied or planned to be used in the EU 
VECTORS project to predict changes in the distribution and productivity of marine 
biological resources. The authors divided all models into the following categories: 
statistical models, biophysical models, full life cycle models, food web models, and 
end-to-end models. 

 
Conclusions 

The modeling approaches and modeling instruments discussed in this review 
have advantages and disadvantages in terms of their ability to detect and predict 
changes in the distribution and productivity of living marine resources. In most of 
the considered models, there are no mechanisms for taking into account 
the adaptive ability of populations to environmental changes and external 
influences. This, according to the review authors, is one of the main problems for 
forecasting. In some cases, existing modeling tools will not be sufficient to cover 
all relevant processes and new instruments will be required. 

It is expected that the development and use of an ensemble of different types 
of models for studying the same marine areas, biological communities, and 
hydrophysical aspects will not only make it easier to test the assumptions made in 
more complex models, but also develop an evidence-based approach that will 
increase confidence in the reliability of model predictions of changes in the spatial 
distribution of populations and their productivity. 

Domestic experience in developing an analogue of the end-to-end model in 
relation to marine systems is limited to simulation models of the Sea of Azov 
ecosystem and its catchment area. 
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