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Abstract 
Purpose. The work is aimed at obtaining a discrete equation for the rate of the available potential 
energy change in strict accordance with the finite-difference formulation that ensures adequate 
reproduction of discrete energy, and at analyzing its terms based on the results of a numerical 
experiment with realistic atmospheric forcing. 
Methods and Results. On the basis of the well-known methods of computational mathematics (method 
of indeterminate coefficients and imitation modeling), a finite-difference equation for the available 
potential energy, which corresponded to its differential form, was obtained. In the equation structure, 
an additional term, which was conditioned by transition to a discrete problem and had a diffusion 
form, appeared. Energy analysis for the hydrological winter of 2011 in the Black Sea showed that 
the highest values of available potential energy in the upper layer were observed in the central region 
of the sea. Below 100 m, the available potential energy increased towards the coast where intense 
mesoscale variability was observed. At the depths exceeding 200 meters, the largest stock of this 
energy was concentrated in the Sevastopol and Batumi anticyclones. Action of the main forces, 
namely the forces of buoyancy, advection and horizontal diffusion, takes place in the coastal areas of 
the sea. 
Conclusions. The resulting difference equation for the rate of the available potential energy change 
exactly corresponds to the discrete formulation and, therefore, accurately reflects the energy of 
the discrete problem. Analysis of the equation permitted to show that in winter, the rate of 
the available potential energy change is influenced predominantly by eddy activity at the depth slope. 
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Introduction 
Currently, an increasing attention is paid to the analysis of the energy of 

numerical experiments on the circulation simulation in the seas and oceans, since it 
allows the direct estimation of the role of the main forces in the circulation 
variability processes. Evaluation of the eddy and average energy balance helps to 
understand the way movements of different scales interact and what forces are 
decisive in this process. 

In [1], the kinetic energy budget components in the World Ocean models are 
calculated depending on the horizontal resolution and horizontal viscosity. When 
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calculating the energetics, direct and reverse energy cascades are more accurately 
described in a model that reproduces structures with dimensions smaller than 
the Rossby baroclinic deformation radius. Based on the seasonal variability 
estimate of the eddy kinetic energy, the authors of [2] analyze the mesoscale 
variability of the velocity field. Energy analysis of currents in semi-enclosed seas 
permits to study the Kuroshio current dynamics [3] and the eddy activity evolution 
in the Red Sea [4]. In [5], based on an eddy-resolving model, the causes and 
evolution of the mesoscale variability of the Sea of Okhotsk circulation are 
analyzed. To that end, the kinetic energy budget is calculated and analyzed. It is 
shown that the generation of mesoscale features of the alongshore circulation is 
mainly due to baroclinic instability. 

In classical work of E. Lorenz [6], the concept of available potential energy is 
introduced as a part of potential energy that can be converted into kinetic energy 
and vice versa. The sum of the kinetic and available potential energy is a new 
invariant that is preserved in the absence of external sources, friction and diffusion. 
By introducing the time-averaged energy and eddy energy concepts as deviations 
from the average [7, 8], it is possible to construct an energy cycle allowing to 
estimate the processes of interaction between average and eddy motions in the seas 
and oceans. The traditional method for approximating the equations for the rate of 
the kinetic and available potential energy change is the discretization of differential 
energy equations. In this case, strictly speaking, the finite difference energy 
equations do not correspond to the discrete equations of the model, which can lead 
to inaccurate quantitative estimates. A more correct approach should be 
the derivation of energy equations from the difference equations of the problem. 

In [9], finite-difference equations for the rate of kinetic and potential energy 
change were obtained from the original discrete formulation and, on their basis, 
energy-active regions of the Black Sea climatic circulation were studied. 
The present work is a continuation of these studies. It is devoted to the derivation 
and analysis of the equation for the available potential energy as an exact 
consequence of the discrete equations of the model. Using the winter period of 
2011 as an example, the energy terms of the equations for the available potential 
energy are calculated and their structure is analyzed. 

 
Model equations and boundary conditions 

The equations of the Black Sea dynamics model in the Boussinesq 
approximation, sea water hydrostatics and incompressibility have the following 
form [9] 

 

( ) 4
0

1(ξ ) ς ( ' ) ν ν ,
ρt z x x V z z Hu f v wu g P E u u− + + = − − + + − ∇                   (1) 

 

( ) 4
0

1(ξ ) ς ( ' ) ν ν ,
ρt z y y V z Hzv f u wv g P E v v+ + + = − − + + − ∇                (2) 

 

0,x y zu v w+ + =                                                 (3) 
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  0 0
0

ρ ς g ρ μ gρ ς ,
z

P g d P′= + = +∫                                             (4) 

 

4( ) ( ) ( ) κ (κ ) ,H V
t x y z z zT uT vT wT T T+ + + = − ∇ +                             (5) 

 

4( ) ( ) ( ) κ (κ ) ,H V
t x y z z zS uS vS wS S S+ + + = − ∇ +                            (6) 

 

ρ=φ( , ).T S                                                            (7) 
 

Designations in the relations (1)–(7) are generally accepted [9]. The form of φ 
function in expression (7) will be specified later. 

When z = 0 
 

0ν τ , ν τ , ς , κ , κ ( ) ,x y v T V
v z v z t z zu v w T Q S Pr Ev S= − = − = − = = −       (8) 

 

while z = H(x, y) 
 

u = v = w = 0,   0z zT S= = .                                       (9) 
 

On solid sidewalls for meridional sections of the boundary 

2 2 0, 0,x x x xu u v v T S= ∇ = = ∇ = = =                            (10.1) 
 

for the zonal ones –  
 

2 2 0, 0.y y y yv v v v T S= ∇ = = ∇ = = =                        (10.2) 
 

In the boundary sections where rivers and the lower Bosphorus current flow in, 
the following conditions are set: 
for meridional sections – 

 

2 2 0, , .p p
y xu u v v T T S S= ∇ = = ∇ = = =                          (11.1) 

 

for the zonal ones –  
 

2 2 0, , .p p
y yv v u u T T S S= ∇ = = ∇ = = =                        (11.2) 

 

Conditions (10) are satisfied for the upper Bosphorus current. 
In the relations (8)–(11), the following designations are used: (τx, τy) is 

the tangential wind stress; QT(x, y, t) is the heat flow; S0 is the salinity on the sea 
surface obtained in the model; Pr(x, y, t) is the precipitation; Ev(x, y, t) is 
evaporation on the sea surface; (Tp, Sp) are the temperature and salinity at 
the mouths of the rivers and in the lower Bosphorus current set according to 
the results of observations. 

Equations (1)–(7) are supplemented in accordance with the Mellor – Yamada 
2.5 parametrization [10] with equations for the turbulence kinetic energy and 
the turbulence macroscale with the corresponding boundary and initial conditions. 

The initial conditions for problem (1)–(11) were taken in the following form [11]: 
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when t = t0 
 

(T, S) = (T0, S0),     u = u0,     v = v0,     ζ = ζ0.                          (12) 
 

Derivation of the difference equation  
of the rate of available potential energy change 

Let us consider the problem in the absence of external forces and diffusion 
(in the adiabatic approximation). We believe that  

ρ( , , , ) ρ ( , , , ) ρ ( ),sx y z t x y z t z∗= +  
where 

1 1ρ ( ) ρ( , , , ) , ,s

T S

z x y z t d dt d dxdy
T

 
 = Ω Ω =
 Ω 
 
∫ ∫∫                    (13) 

 

where Ω is the integration domain at z-level; Т is the integration time (in our case it 
is equal to one year).  

Let us introduce the following notation: 

( ) ( )21 ρ
ρ , where .

2
pe pe s pe

zA a a g
∗

−
= =  

The density equation is 

( ) ( ) ( )ρ ρ ρ ρ 0.t x y zu v w+ + + =                                   (14) 
 

Substituting expansion (13) into expression (14), we obtain 

ρ ρ ρ ρ ρ ρ ( ) 0.s
t x y z z x y zu v w w u v w∗ ∗ ∗ ∗ ∗+ + + + + + + =                     (15) 

 

Transforming expression (15), we obtain an equation for the available 
potential energy. 

 

( ) ( ) ( ) ( )
( )

1

1

ρ

ρ ( ) ρ 0.

pe pe pe pe s
zt x y z

pe s
x y z z

A ua va wa

g w a u v w

−

−∗

 
+ + + + 
 

+ + + + =

                   (16) 

 

In differential form, due to the continuity equation fulfillment, the last terms in 
the equations (15) and (16) are equal to zero. In the difference formulation, this 
may not be the case due to the approximation inconsistency ρs

z as a factor for 
horizontal and vertical advection. 

Let us introduce the following notation (similarly for j, k) for an arbitrary grid 
function defined at i, j and k points (Fig. 1) 

 

1/21
1/2 1 1/2 1/2, , ,

2
k kk k
z zk k k k k

z z
z h z z h z z++

+ + + −

+
= = − = −  
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( )

1/2, , 1/2, , 2 2 2
, , , , , , , , ,

4 2 2
, , , , , , ,

φ φ
δ φ , φ δ φ δ φ ,

φ φ .

i j k i j k
x i j k x y i j k x i j k y i j k

x

x y i j k x y x y i j k

h
+ −−

= ∇ = +

∇ =∇ ∇

 

Let us write out finite-difference analogues of equations (3), (5) and (6): 

, , , , , ,δ δ δx i j k y i j k z i j ku v w+ +  = 0,                                    (17) 
 

( ) ( ) ( ), ,
, , , , , , , , , , , ,δ δ δ 0,i j k

x i j k i j k y i j k i j k z i j k i j k
T

u T v T w T
t

∂
+ + + =

∂
     (18) 

 

( ) ( ) ( ), ,
, , , , , , , , , , , ,δ δ δ 0.i j k

x i j k i j k y i j k i j k z i j k i j k
S

u S v S w S
t

∂
+ + + =

∂
    (19) 

 

 
 

F i g.  1. Schematic image of the box (i, j, k) and spatial distribution of the variables 
 
The equation for the density difference analogue in the adiabatic 

approximation has the following form 
 

( ) ( ) ( ), ,
, , , , , , , , , , , ,

ρ
δ ρ δ ρ δ ρ 0.i j k

x i j k i j k y i j k i j k z i j k i j ku v w
t

∂
+ + + =

∂
   (20) 
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Let us introduce a discrete analog in the expansion (13): 

2
, , 1/21/2

2 1 κ 1/2 ,1

1 1ρ ρ ,
( )

t
s

i j k x y tk
t i j

h h h
t t ++

+

 
 =  − Ω  
 

∑ ∑  

 

where th  is the time step; κ 1/2+Ω – surface area at κ 1/2z +  level; 1t  is the initial 
and 2t  is the final moment of integration. 

We believe that the expansion (13) can be written in discrete form as follows: 

, , , ,ρ ρ ρ ,s
i j k i j k k

∗= +     1/2, , 1/2, ,ρ ρ ρ
zs

i j k i j k k
∗

+ += + , 

, 1/2, , 1/2,ρ ρ ρ
zs

i j k i j k k
∗

+ += +      
, , 1/2 , , 1/2 1/2ρ ρ ρ .s

i j k i j k k
∗

+ + += +         (21)
 

 

Substituting the expressions (21) into the formula (20) and taking into account 
difference equations (17)–(19), we obtain an analog of the equation (15): 

( ) ( ) ( ), ,
, , , , , , , , , , , ,

ρ
δ ρ δ ρ δ ρi j k

x i j k i j k y i j k i j k z i j k i j ku v w
t

∗
∗ ∗ ∗∂

+ + + +
∂

( ), , , , , , , ,ρ δ δ δ δ ρ .
z zs s

x i j k y i j k z i j k i j k zk ku v w w+ + + = −                  (22) 
 

Density approximations in the center and on the edges of the box depend on 
temperature and salinity, which in turn satisfy the nonlinear equation of state. 
To match the difference analogs , , , , 1/2ρ , ρi j k i j k+ with 

, , , , 1/2 , , , , 1/2, , ,i j k i j k i j k i j kT T S S+ + , special relations were obtained [9]. It follows 

from them that ρ ρ
zs s

k k≠ . Therefore, the form of expression (22), in which the last 
term on the left side is equal to zero, is provided by an approximation of 
equation (21). 

We believe that the equation of state is written as follows: 
 

2 1
, , , ,, , , , , , 00 10 01

0 0
2

, , , , , ,11 20

ρ

.

n m
nm i j k i j ki j k i j k i j k

n m

i j k i j k i j k

a T S a a T a S

a T S a T

= =

= = + + +

+ +

∑ ∑
  

      (23) 
 

Then, considering the density as a functional of , ,i j kT and , ,i j kS  and 
differentiating the equation (23), we obtain 

 

( )' 10 11 , , 20, , , ,ρ 2 ,i j ki j k i j kT
a a S a T= + +      ( )' 01 11 , ,, ,ρ .i j ki j k S

a a T= +  
 

The expressions for calculating the density on the box faces [9] have 
the following form: 
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1/2, , 10 1/2, , 01 1/2, , 20 1, , , ,

, , 1, , 1, , , ,
11

ρ α α α

α ,
2

x x
i j k i j k i j k i j k i j k

i j k i j k i j k i j k

T S T T

T S T S
+ + + +

+ +

= + + +

+
+

 

, 1/2, 10 , 1/2, 01 , 1/2, 20 , 1, , ,

, , , 1, , 1, , ,
11

ρ α α α

α ,
2

y y
i j k i j k i j k i j k i j k

i j k i j k i j k i j k

T S T T

T S T S
+ + + +

+ +

= + + +

+
+

   (24) 

, , 1/2 10 , , 1/2 01 , , 1/2 20 , , 1 , ,

, , , , 1 , , 1 , ,
11

ρ α α α

α .
2

z z
i j k i j k i j k i j k i j k

i j k i j k i j k i j k

T S T T

T S T S
+ + + +

+ +

= + + +

+
+

 

 

Then, taking into account the representation (24), we obtain 

* * * * *
, , , , , , , , , ,, , , , , , , ,ρ ρ φ , ρ ρ φ , ρ ρ φ ,

x y zyx z
i j k i j k i j k i j k i j ki j k i j k i j k i j k= − = − = −    (25) 

 

где                 ( ) ( )
2 ' '* 2 * 2

, , , , , , , ,, ,φ ρ δ ρ δ ,
4

x x
i j k x i j k i j k x i j ki j k T S

h T S
 

= + 
 

  

 

( ) ( )
2 ' '* 2 * 2

, , , , , , , ,, ,φ ρ δ ρ δ ,
4
yy

i j k y i j k i j k y i j ki j k T S

h
T S

 
= + 

 
 

 

( ) ( ) ( ) ( )' '* *
, , , , , , , ,, ,φ ρ δ δ ρ δ δ .

4

k
z k kz

i j k z z z i j k i j k z z z i j ki j k T S
h h T h S

 
= + 

 
 

 

We believe that 

( ) ( )2*
1 , ,

, , , , , ,

ρ
δ ρ , где ,

2
i j kpe pe pes

zi j k i j k k i j kA a a g
−

= =                        (26) 
 

( ) ( )

( )

2 2* *
1/2, , , 1/2,

1/2, , , 1/2,

2*
, , 1.2

, , 1.2

ρ ρ
, ,

2 2

ρ
.

2

i j k i j kpe pe
i j k i j k

i j kpe
i j k

a g a g

a g

+ +
+ +

+
+

= =

=

 

 

Having carried out simple transformations, we obtain the following equation 
(analogous to the equation (16)): 

 

( ) ( ) ( ){ } ( ), , 1
, , , , , ,, , , , , ,δ δ δ δ ρ

pe
i j k pe pe pe

x i j k y i j k z i j k z ki j k i j k i j k
A

u a v a w a
t

−∂
+ + + +

∂
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( )

* * * *
1/2, , 1/2, , , , , 1/2, , 1/2, , ,

1* *
, , 1/2 , , 1/2 , ,

ρ ρ δ ρ ρ δ
2

ρ ρ δ w δ ρ

i j k i j k x i j k i j k i j k y i j k

i j k i j k z i j k z k

g u v+ − + −

−
+ −

+ + +

+ =

                      (27) 

( ) ( )
( ) ( )

* *
, , , , , , , , , ,, , , , , ,

1*
, , , ,, ,

ρ φ δ ρ φ δ ρ

φ δ ρ δ ρ .

z yx
i j k x i j k i j k y i j k i j ki j k i j k i j k

z
z i j k i j k z ki j k

g w g u v

w

∗

−

= − + + +
+ 

  

 

Consider the terms in this equation. The first two on the left side of 
the equation (27) are clear. The third term in square brackets has no analogue in 
the differential equation and is an additional difference term after the expression 
(22) is multiplied by the expansion (25). Its origin is associated with the available 
potential energy representation on the box edges, which, strictly speaking, can be 
different, adopted in formulas (26). Therefore, it seems possible to find suitable 

expressions for 1/2, , , 1/2, , , 1/2, ,pe pe pe
i j k i j k i j ka a a+ + +  for more accurate equation (16) 

approximation. 
The first term on the right side of the equation (27) describes the work of 

the buoyancy force, the second is an additional term, which, taking into account 
the expansion (25), has a diffusion form. Estimates show that its value is an order 
of magnitude smaller than physical diffusion. Therefore, if it is included in 
the diffusion term, then the solution result will change insignificantly. 

Let us rewrite equations (20) and (27) taking into account the diffusion: 

( )
, ,

, , , , , , , , , , , ,

ρ ρ
, ,

ρ
δ ( ρ ) δ ( ρ ) δ ( ρ )

,

i j k
x i j k i j k y i j k i j k z i j k i j k

V H i j k

u v w
t

D D

∂
+ + + =

= +

      (28) 

 

( ) ( ) ( ){ } ( )

( )

, , 1
, , , , , ,, , , , , ,

, , , ,, , , ,

δ δ δ δ ρ

ρ +ω ,

pe
i j k pe pe pe

x i j k y i j k z i j k z ki j k i j k i j k

z ape ape
i j k i j k V Hi j k i j k

A
u a v a w a

t

g w D D

−

∗

∂
+ + + +

∂

+ = +

(29) 

 

where the corresponding terms are included in the horizontal and vertical 
difference diffusion, and , ,ωi j k have an obvious form. 

Let us rewrite the equation (29) in symbolic form: 

( ), ,
, ,, , , , , ,

α +ω .
pe

i j k ape ape
i j k V Hi j k i j k i j k

A
b D D

t

∂
+ + = +

∂
                   (30) 

 

In equations (28)–(30), the following notations are introduced:  

( ) ( ) ( ){ }( ) 1
, , , , , ,, , , , , , , ,α δ δ δ δ ρ ,pe pe pe

x i j k y i j k z i j k z ki j k i j k i j k i j ku a v a w a −= + +  
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, , , , , ,ρ .z
i j k i j k i j kb g w

∗
= −  

 

( )ρ α δ [κ (δ )] α δ [κ (δ )]10 , , , , 01 , , , ,, ,

2α [δ [κ (δ )], ,20 , , , ,

α δ [κ (δ )] δ [κ (δ )] ,11 , , , , , , , , , , , ,

V VD T Sz i j k z i j k z i j k z i j kV i j k
V zT Ti j kz i j k z i j k

V VT S S Tz z z zi j k i j k i j k i j k i j k i j k

= + +

+ +

 + +  

 

 

( )ρ 2 2 2
10 , , , , , ,01 20, ,, ,

2 2
, , , , , , , ,11

(α α 2α

α [ ]),

H
xy xy i j k i j k xy i j kH i j ki j k

i j k xy i j k i j k xy i j k

D T S T T

T S S T

κ= ∇ + ∇ + ∇ +

+ ∇ + ∇
 

( ) ( ) ( ) 1ρ
, ,

, , , ,
ρ δ ρape s

i j k zV V ki j k i j k
D g D

−∗= +  

( ) ( ) ( ) ( ) ( )( )
' ' 1* * *

, , , , , , , , , , , ,ρ δ δ ρ δ δ δ ρ δ ρ ,
4

k
k kz

i j k z z z i j k i j k z z z i j k z i j k i j k z kT S
hg h T h S w − 

+ + 
 

 

( ) ( ) ( )

( ) ( )

1ρ
, ,

, , , ,
2 ' '* 2 * 2

, , , , , , , ,

ρ δ ρ

ρ δ ρ δ
4

ape s
i j k zH H ki j k i j k

x
i j k x i j k i j k x i j kT S

D g D

hg T S

−∗= +

  + + +  
 

 

( ) ( ) ( )
2 ' ' 1* 2 * 2

, , , , , , , ,ρ δ ρ δ δ ρ .
4
y s

i j k y i j k i j k y i j k z kT S

h
T S

− + +  
 

 

 
Results of numerical calculations 

To analyze the terms of the equation for the rate of available potential energy 
change (29), which make the main contribution to the energy cycle, the results of 
calculations of the Black Sea circulation for realistic atmospheric conditions in 
2011 [11] will be used. Horizontal resolution was 1.6 × 1.6 km. Vertical 
calculation was carried out on 27 horizons. The fields for the initial conditions (12) 
corresponded to January 1, 2011. 

Note that ρs
k  was calculated as the average vertical profile for the year. 

For example, consider the winter circulation regime. In 2011, it was 
characterized by the distinct Black Sea Rim Current throughout the year, which 
intensified in winter-spring period and weakened in summer-autumn period 
(Fig. 2). Anticyclonic eddies of various horizontal scales and intensities were 
observed along its periphery. Dynamics of the Black Sea currents in 2011 was 
considered in detail in [11], so now we are to go on to the analysis of the available 
potential energy variability at this time of the year. 
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F i g.  2. Reducible sea level (cm) on February 1, 2011 
 
Fig. 3 shows the horizontal structure of available potential energy for 

the middle of the hydrological winter of 2011. The horizon-averaged available 
potential energy decreases with depth and below the 50 m horizon, its value is 
an order of magnitude smaller than in the upper 30 m layer. 

In the upper 30-meter layer in the central region of the sea (Fig. 3, a), 
corresponding to the cyclonic gyre center, higher values of available potential 
energy are observed, which decrease towards the periphery of the region. Below, 
the reverse trend takes place: in the sea center, the values are lower than on its 
periphery (Fig. 3, b, c). Moreover, in the deep layers (below the 200 m horizon), 
the largest supply of available potential energy takes place in anticyclonic gyres 
(the Sevastopol and Batumi ones). The local maximum available potential energy 
at the 50 m horizon (Fig. 3, b) is due to the inflow of the Marmara Sea waters. 

Let us consider the structure of the main energy terms in the equation (29). 
The basic characteristic of energy exchange is the work of the buoyancy force, 
shown in Fig. 4. 

Two distinct areas of kinetic and available potential energy exchange are 
observed: the central region of the sea, where this process occurs rather weakly, 
and the coastal area, characterized by intensive work of the buoyancy force. 
Moreover, the energy exchange patterns differ qualitatively in depth. In the upper 
10–30 m layer (Fig. 4, a), the main work of the buoyancy force is concentrated 
along the western slope, where zones of transition from available potential energy 
to kinetic energy and vice versa exist. It indicates the possible development of 
various types of instability on the western continental slope. At the underlying 
horizons of the intensive work area, buoyancy forces are observed not only near 
the western coast, but also in the eastern regions – near the Anatolian and 
Caucasian coasts (Fig. 4, b, c). At depths of 200–300 m, in the zone of 
the Sevastopol and Batumi anticyclones, there is a clearly pronounced energy 
transition from kinetic to available potential energy, which indicates the baroclinic 
instability processes for this time period (Fig. 4, c). 
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F i g.  3. Available potential energy at the 20 (а), 50 (b) and 300 m (c) horizons 
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F i g.  4. Action of the buoyancy force at the 20 (а), 50 (b) and 300 m (c) horizons 
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F i g.  5. Available potential energy advection at the 50 (а) and 300 m (b) horizons 
 

The transfer of available potential energy as a result of advection (Fig. 5) 
occurs most intensively in the coastal sea area. In the upper 50-m layer, it is 
concentrated near the western coast, in the lower layers – along the Anatolian coast 
(Fig. 5, a). In contrast to the work of the buoyancy force in the area of 
the Sevastopol and Batumi anticyclones, the advection influence is small and rather 
uniform along the horizontal, which indicates an insignificant role of advective 
forces in the evolution of these gyres, at least during this time period. Below 
the 200 m horizon (Fig. 5, b), the greatest advective transport takes place in 
the Anatolian coast area (the zone of mesoscale eddies) and in the Sevastopol 
anticyclone area. 

The greatest horizontal diffusion is observed in the upper layer of the sea 
(Fig. 6, a), which is influenced by two factors – significant horizontal gradients in 
the density field and the inflow of rivers, primarily the Danube. It is clear that, 
compared with the central part of the basin, the alongshore zone is characterized by 
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a large diffusion flux. This process is especially pronounced in deep layers 
(Fig. 6, b), where the available potential energy diffusion is concentrated near 
the side boundaries in the form of a narrow band. 
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F i g.  6. Horizontal diffusion of available potential energy at the 5 (a) and 300 m (b) horizons 
 
Structure of the vertical diffusion of available potential energy is determined 

primarily by the heat flows, precipitation and evaporation on the sea surface. 

Therefore, its greatest values are observed in the upper 20 m layer. Below ape
VD , 

the values decrease by an order of magnitude. 
 

Conclusion 
To derive a discrete equation for the rate of available potential energy change, 

an overdetermined grid was used, where new unknown quantities connected by 
additional relations (21), (25), (26) were introduced. These connections were 
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chosen so that some properties of the differential problem were satisfied. Formulas 
(21) ensure the correspondence of the equations (15) and (22), expressions (25) and 
(26) lead to a finite difference equation (27), which includes a term that is not 
present in the differential formulation and has a diffusion form. Since it is an order 
of magnitude smaller than physical diffusion, it can be interpreted as additional 
diffusion, which, at least over a relatively short integration interval, does not affect 
the calculation results. 

Based on the above, it can be argued that the problem of obtaining a discrete 
equation for available potential energy having the same characteristics as 
the continuous case has been partially completed. It is not necessary that 
the available potential energy on the box edges takes the form of the approximation 
(26). It can be assumed that there is a suitable choice of the expression (26), which 
will ensure the fulfillment of the basic properties of the differential equation. 

The resulting difference equation (29) corresponds exactly to the discrete 
formulation and therefore adequately reflects the difference problem energetics. In 
the middle of the hydrological winter in the Black Sea, the highest values of 
available potential energy are observed in the upper layer in the sea center. Below 
the 100 m horizon, the picture is reversed – available potential energy increases 
towards the coast, where intense mesoscale variability is observed. At a depth over 
200 m, the largest supply of available potential energy is concentrated in 
the Sevastopol and Batumi anticyclones. Therefore, for the winter period, it is 
typical that the available potential energy in the upper layer of the sea takes place 
in the central part of cyclonic gyres; at a depth of about 100 m or more, it is 
contained in the area of synoptic and mesoscale eddies.  

Work of the main forces (buoyancy, advection and horizontal diffusion) is 
concentrated in the coastal sea areas. Thus, the rate of available potential energy 
change in the winter period is predominantly influenced by eddy activity at 
the continental slope. 
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