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Abstract 
Purpose. The work aims to study the behavior of vertical barotropic-baroclinic modes of Rossby 
waves on a non-zonal shear flow in the vicinity of the focus.  
Methods and Results. Inferred from the reference equation, we consider some variants of the behavior 
of eigenfunctions in the vicinity of the focus. It is shown that the number of possible variants for non-
zonal flows increases compared with the zonal case. This means that qualitatively new additional 
scenarios appear in the case of a non-zonal flow compared with the problem for internal waves when 
the behavior of Rossby waves in the vicinity of the localization level qualitatively coincides with 
the behavior for the zonal case, herewith the coefficient of a passage through the focus is always 
exponentially small. The solution becomes extremely sensitive to the initial parameters of the wave 
incident on the non-zonal focus. Another important point is that the second, additional anomalous 
focus appears on the non-zonal flow. When a wave falls on this focus on one side, it behaves like 
a classic focus with a classic wave adhering. And when falling from the opposite side, the Rossby 
wave does not notice the focus and passes it without a short-wave transformation. In the problem, 
abnormal scenarios appear with the passage of the focus without difficulty with a coefficient of 
passage equal to one in addition to the scenario with an infinitely long time adhering to the focus and 
an exponentially small coefficient of passage. 
Conclusions. The anomalous behavior of Rossby waves in the horizontal plane on non-zonal flows is 
accompanied by anomalous behavior of the vertical mode, in contrast to the strictly zonal case of flow 
with different kinematics. The eigenvalues of the Sturm-Liouville problem change abruptly during 
the transition from the non-zonal to the zonal case. As a consequence, there is no limit transition from 
a weakly non-zonal case to a strictly zonal one. Such an extremely ambiguous analytical behavior of 
Rossby waves in the vicinity of the focus on baroclinic non-zonal flows rather indicates the absence 
of analytical prediction and the need for a deeper and more detailed analysis using numerical 
methods. 
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Introduction 
The problem of analyzing the interaction of shear flows and the waves 

generated by them is now extremely relevant for understanding the synoptic 
variability of the ocean and has been studied both in the linear formulation for 
internal gravity waves and Rossby waves [1–4] and in the nonlinear formulation 
[5–8]. An overwhelming number of papers in geophysics, which appeared in recent 
years, were related to numerical methods. At the same time, there were extremely 
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few analytical works, whose authors tried to understand the main issues of wave 
and current interaction on a qualitative level. From an applied point of view the 
following question is extremely important: can the solutions known in theoretical 
physics be projected onto Rossby waves in the ocean? 

It is known that mathematics, as a rule, “works” perfectly well for the case of a 
purely zonal flow; however, any, even weak, deviation from zonality makes the 
solutions extremely capricious, and often many theorems basically stop working 
[9–11]. 

Nowadays, the current progress of modern earth remote sensing methods, 
particularly the advances in satellite altimetry and the development of software 
packages for automatic identification of ocean eddies, makes the problem of 
Rossby eigenvalues on barotropic-baroclinic flows extremely relevant. One of the 
methods for studying the dynamics of ocean waves is the “vertical modes – 
horizontal rays” method [12]. Since the horizontal scales of Rossby waves make up 
tens to hundreds of kilometers, this approximation works well in the open ocean. If 
one accepts stratification as constant and does not consider topography and 
baroclinic background flows, then the vertical mode of Rossby waves is 
determined by one stratification and does not depend on the β-parameter. In this 
regard, the Rossby wave becomes similar to an ordinary internal wave and its 
vertical mode is an ordinary trigonometric function with a classical quantization of 
eigenvalues of the Sturm – Liouville problem. In this formulation, the determining 
factor is the horizontal inhomogeneity of the large-scale flow. Horizontal flow 
variations are the leaders in the problem. However, along with the similarity of the 
problem formulation for internal waves and Rossby waves, there are both 
qualitative and quantitative differences. 

The first difference between Rossby waves and internal waves is that for 
Rossby waves there are two qualitatively different scenarios of wave ray evolution, 
which is a consequence of the β-parameter presence in the problem for both the 
zonal background flow [13] and the non-zonal flow [14]. For a non-zonal case, a 
qualitatively new scenario emerges, which is associated with the phenomenon of 
overshooting, i.e. a Rossby wave ducks under the critical layer. Another scenario is 
adhering, where a Rossby wave asymptotically approaches a critical layer [3].  

The second and most significant difference between internal waves and 
Rossby waves is as follows. For the internal waves, an addition of the background 
flux baroclinity does not qualitatively change the scenario of the wave train 
evolution. An infinite countable spectrum of the Sturm – Liouville boundary value 
problem with a trigonometric set of eigenfunctions smoothly passes into a new 
infinite countable spectrum, but with the eigenfunctions in the form of 
exponentially-majorized Hermite polynomials. This introduces phenomena such as 
vertical focusing and “non-dispersive” focusing [15]. However, the focal point for 
internal waves still remains a kind of a “black hole”, with the rays being 
the “leaders” and the vertical modes being the “ardent followers” with some 
secondary role. 

The mathematical concepts of “focus” and “focusing” from the theory of 
differential equations as applied to the problems of Rossby waves interacting with 
flows are thoroughly discussed in [10], and they have a certain physical meaning 
for the ocean. If in optics the focus is a kind of metal paraboloid that focuses 
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a beam of rays to a point, then in the ocean such a “metal paraboloid” is 
inhomogeneity of the background flow velocity fields. Metaphorically speaking, 
the ocean has “ears”. In physics, it is close to an acoustic waveguide, but the 
waveguide there is homogeneous and infinite, and here it is as if gradually 
narrowed from finite size to a point, thus, the wave is also compressed vertically to 
a point, i.e. focused. Focus, therefore, is the vertical contraction of the wave to a 
point size at some vertical horizon, and in the horizontal plane, it is a regular plane 
wave. 

It is known that the strongest wave processes are observed in the vicinity of 
frontal formations. For the open ocean, the horizontal gradients of the background 
flows are much weaker than the vertical ones, and then the analytical approach in 
the WKB approximation, where the slowness of the horizontal gradients compared 
to the vertical variability is a small parameter, looks quite justified. In contrast, for 
a region of strong shear flows, horizontal and vertical gradients of background 
flows must be considered simultaneously. The analytical method that 
simultaneously accounts for these gradients in this kind of problem is the 
construction of a reference two-dimensional equation [10]. 

In practice [16–18], in order to calculate phase velocities of Rossby waves, a 
fundamentally one-dimensional problem is solved, which takes into account only 
the vertical profile of the velocity field U(z). It is important to note that the idea of 
vertical focusing of Rossby waves, which was originally formulated purely 
analytically [13], was subsequently confirmed in practical numerical calculations 
for real ocean currents [17, 18]. However, the question “How much will the 
spectral problem change if the simultaneous influence of both vertical and 
horizontal gradients of the background flow field is taken into account?” has not 
yet been fully studied even analytically. For zonal flows, analytical calculations 
indicate that such focusing occurs at least for the open ocean [13]. For a non-zonal 
flow, the results are known when non-zonality leads to extremely 
incomprehensible and unexpected effects when an eddy “drives” into its own beta 
plume [6, 7]. We shall note that all these conclusions were obtained in the “shallow 
water” approximation. In our setting, we construct a reference equation in the 
quasi-geostrophic approximation, for which a Galilean invariance [11] takes place. 
We consider an analytical two-dimensional model of vertical focusing that takes 
into account non-zonal background flow and show that vertical focusing is an 
extremely strong phenomenon, while non-zonality manifests itself in terms of first 
derivatives in the model equation and does not affect the highest second derivative 
in any way. However, the solution in the vicinity of the non-zonal critical layer is 
not unique. This is due to the overshooting phenomenon when a wave can cross the 
critical layer, and in this case, the solution in the vicinity of the critical layer is no 
longer a focus but is described by a certain constant. Thus, the purpose of this work 
is to study the behavior of vertical barotropic-baroclinic modes of Rossby waves on 
a non-zonal flow in the vicinity of the focus. 

 
Problem statement 

Let us consider the equation of vorticity on the β-plane linearized against 
a plane-parallel shear flow U directed at some fixed angle θ to the parallel [3]: 
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,    (1) 

 

where ( ), , ,A x y z tΨ  is the flow function (pressure); 2 2/S N f= , N is the 

Brunt – Väisalä frequency, f is the Coriolis parameter; β df
dy

= . The coordinate 

system ( ), ,x y z  is right-handed, t is time; axis x is directed along the flow at an 
angle θ to the parallel (Fig. 1). To analyze this equation, we use the wave approach. 

Since the background flow is homogeneous along the longitudinal coordinate x 
and independent of t, the solution for perturbation will have the following form: 

 

( ) ( ) ( ), , , , , ,ω exp ω ωA x y z t k y z i kx t dk d
+∞ +∞

−∞ −∞

Ψ = Ψ  −  ∫ ∫ .                   (2) 

 

Here k is the wavenumber directed towards the x-axis; ω is the wave frequency. 
Substituting (2) into (1), we obtain the following equation for the function

( ), , ,ωk y zΨ : 
 

( ) ( )
2

2 1 1
2ω βsinθ βcosθ 0yy z z

z

kU k S i k U S U
y z y

− − ∂ ∂ ∂Ψ   − − + Ψ − − Ψ − − =    ∂ ∂ ∂  
. (3) 

 

The key point of this paper is a non-trivial nonlinear variable substitution that 
allows one to perform a variable separation in a two-dimensional inhomogeneous 
equation with initially non-separating variables. Such an approach was presented in 
[10], but it did not explain how to justify such a substitution. Below we will show 
that this approach is due to the application of WKB approximation, after which it 
becomes obvious how variables have to be transformed to see the automodel of the 
solution. 

 
One-dimensional reference equation. Barotropic case 

In the shallow water approximation, the solution can be searched for using the 
split-variable method: 

 

( ) ( )2
0

π, , ,ω , ,ω cos
n

nk y z k y z
H

∞

=

 Ψ = Φ  
 

∑ ,                                 (4) 
 

where H is the ocean depth. For the function ( ), ,ωk yΦ  from (3) for the linear 
velocity profile of the background flow, we obtain the following linear one-
dimensional equation: 
 

( )
2

2 1 2
2ω βsinθ βcosθ 0kU k S m i k

y y
− ∂ ∂Φ

− − − Φ − −Φ = ∂ ∂ 
,                   (5) 
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where 2 2π / , / ,m n H S N f= =  N is the Brunt – Väisalä frequency, which is 
considered to be constant, and H is the ocean depth. 

Let us consider the behaviour of the solution in the vicinity of the critical layer 
cy . We shall make the following substitution: 

 

( ) ( )ω y y c y ckU kU y kU y kU y y− − = − = − .                           (6) 
 

Then we move the origin of the coordinates to the critical layer. With these 
assumptions from (5), we obtain the following barotropic reference (model, m = 0) 
equation in the vicinity of the critical layer: 

 

0yy yy a bΦ + Φ + Φ = .                                               (7) 
 

Here 

0 0
βsinθ βcosθ, ,

y y

a i a a b
kU U

= = = .                                   (8) 

 

The solution of equation (7) has a branching point at zero. The traditional 
approach to the analysis of the solution of equation (7) can be done in terms of 
the Bessel function. However, for the sake of consistency of the description and 
preservation of the unified approach, we find the solution of equation (7) in 
the form of the Fourier integral and construct its asymptotics independently, 
without involving the apparatus of special functions. 

Therefore, we are looking for a solution in the following form: 
 

( ) ( ) ( ), ,ω , ,ω expk y G k l i l y d l
+∞

−∞

Φ = ∫ .                               (9) 

 

Using the properties of the Fourier transformation (which are derived from the 
definition of the Fourier transformation and are formally obtained from (9) by 
differentiating by y as a parameter), we obtain 

 

( )2 2, , ,y yy yy l
G i l G l G y i l GΦ→ Φ → Φ →− Φ →− ,                (10) 

 

where the arrow denotes the corresponding Fourier transformation; i is the 
imaginary unit. We obtain the following equation for the Fourier-transformed 
image G: 

 

( )2 2 0li l G i l G i al b G− − + + = .                                       (11) 
 

Integrating (11) and substituting into (9), we find the desired general solution 
in the form of a Fourier integral. Since the integrand contains a term containing the 
factor ln l , the integration limits ( ),−∞ +∞ must be divided into two intervals 

( ) ( ), 0 , 0,−∞ +∞ . Thus, the general solution will be represented as the sum of 
the solutions to the right and left of the singular point. Further, formally, we will 
have to sew these solutions together. At first, we are to analyze one part of the 
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solution, on one side of the critical layer, and find out the behavior of the solution 
at infinity and in the vicinity of the critical layer without passing through the 
singular point. Thus, below we restrict ourselves to considering only one of the 
solutions: 

 

( ) ( ) 2
0

0

, ,ω ,ω exp ln bk y A k l i a l l y d l
l

+∞
−   Φ = + +  

  
∫ .                    (12) 

 

To analyze the integral (12), we assume that the solution is localized in some 
region of physical space and attenuates at infinity. Then the Fourier-transformed 
image of our solution will also be localized in the vicinity of some wavenumber l0 

in the phase l-space. In this case, the width of the localization region l∆ in the 
phase space must be less than the central wave number l0, so that the contribution 
from the power singularity in the integrand (12) does not contribute to the 
asymptotics of the general solution: 

 

0l l∆ << .                                                     (13) 
 

We introduce the definition of the phase of solution (12) as follows: 
 

( ) 0φ , , ,ω ln bk l y a l l y
l

= + + .                                 (14) 
 

Then the equation for the stationary point of the phase ( )cl l=  has the following 
form 

( ) 0
2φ , , ,ω 0l

c c

a bk l y y
l l

= − + = .                                (15) 

 

From (15) using (8) we find the expression for the y-coordinate of the 
quasimonochromatic wave solution (train): 

 

2

βcosθ βsinθ

y c y c

y
U l kU l

= − + .                                        (16) 

 

Equation (16) is quadratic with regard to ( )c cl l y= . The quadratic equation 
will have two roots in the transparency region, one solution in the reflection point, 
and no solutions in the geometric shadow region. From equation (16) we find two 
modes when approaching the critical layer. The first mode is the passage of the 
critical layer without short-wave transformation when the solution is proportional 
to some constant in the vicinity of the critical layer. The second mode is the short-
wave transformation. In the short-wave limit for non-zonal flows from (16) we 
obtain the following asymptotics: 

 

βsinθ , .c
y c

y l
kU l

∼ →∞                                              (17) 

 

Therefore, a mathematically qualitatively new moment for the non-zonal 
critical layer, in addition to the focusing mode, is the second solution – a certain 
constant. Let us explain what this solution is from a physical point of view. 
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In Fig. 1 (zonal flow) the critical layer is shown by a dotted line. The approach to 
the critical layer is asymptotically long in time and is accompanied by vertical 
focusing of the mode in the vicinity of the velocity profile extremum. In Fig. 2 
(non-zonal flow) there are already two critical layers. In this case, for the trajectory 
indicated in Fig. 2 by number 3, when approaching the critical layer, the 
overshooting takes place. 

 

 
 
 

F i g.  1. Rossby waves track while interacting with a zonal flow 
 
 
The wave initially crosses the critical layer without any special 

transformations and then, having reflected from a larger value of the velocity field, 
approaches the critical layer asymptotically with vertical mode focusing. It is 
the point of intersection of the critical layer that is the new moment for the non-
zonal flow. At this point, the solution is described by constants – both the wave 
number and the amplitude. Such ambiguity of the solution in the vicinity of the 
critical layer makes the concept of “critical layer as an asymptotic regime” 
incorrect since the meaning of the term “asymptote” is lost. Asymptote in Greek 
means “never reachable”. Overshooting – passing the critical layer – makes this 
statement incorrect. 
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F i g.  2. Rossby wave tracks while interacting with a non-zonal flow: 1 – asymptotic approximation 
to the critical layer (adhering); 2 – asymptotic approximation to two critical layers (double adhering); 
3 – crossing of the critical layer and asymptotic approximation to it from the opposite side 
(overshooting) 
 
 

Let us note the following important circumstance. The expression for 
the coordinate of the center of the quasi-monochromatic packet (16) does not 
depend on whether y takes small or large values, i.e. expression (16) is valid at 

( )0,y∈ +∞ . Further, by expanding phase (15) by terms (up to square terms), in 
the short-wavelength limit we obtain 

 
 

( )2
0

2 2

φ , , ,ω
μ

c

y
cl l

k l y a
l l

=

∂
≡ ∼ −

∂
.                                    (18) 

 

Using the Poisson integral, we finally obtain 
 

( ) ( ) ( )0
1, ,ω ,ω exp ln
μ

c

y

k y A k i a lΦ ∼ + .                              (19) 
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Substituting (17) and (18) into (19), we find the asymptotics in the short-wave limit 
for the wave incident on the critical layer: 

 

( ) ( ) ( ) ( )01
0, ,ω ,ω ,ω cos lniak y A k y A k y a y−Φ ∼ ∼ .                    (20) 

 

The one-dimensional solution we obtain (20) is an asymptotic law; this 
solution coincides with the known asymptotics in terms of special functions [19]. 
The constructed solution yields a two-dimensional solution as a simple 
multiplication of two one-dimensional solutions (see formula (4)), in which a 
vertical mode is already present. 

Fig. 1 represents schematically the behavior of the Rossby wave in interaction 
with the zonal flow .U


 It can be seen that there is a reflection point (upper point, 

the wave is reflected from the flow) and there is a critical layer (lower point, the 
wave adheres to the critical layer asymptotically long). 

 
A two-dimensional reference equation. Baroclinic case 

In this paper we modify the two-dimensional reference equation discussed 
earlier [10]: 

 

( ) ( ) ( )
2

1 1 12 0zz yy y
y z

y z a
L L

 
Ψ + + Ψ + Ψ =  

 
.                             (21) 

 

Here a ∼ sin θi is a purely imaginary value and reflects the fact of non-zonality of 
the flow [9, 10]. The new reference equation, despite the complexity of 
coefficients, withstands the procedure of constructing the solution in terms of 
the Fourier integral. By analogy with [10], we will consider the integral on the 
interval ( )0, + ∞ : 
 

( ) ( ) [ ]1
0

, , ,ω , , ,ω expk y z G k l z i l y d l
+∞

Ψ = +∫ .                       (22) 

 

We substitute the expansion (22) into equation (21) and, taking into account 
(10), we obtain 

2 2 2

2

2 0zz y
z y y

l z l lG G i G i G i a l G
L L L

− − − + = .                           (23) 

 

We divide (23) by l and multiply by zL . We obtain 
 

2 2 0z z
zz y z

z y y

L l Ll zG G i G i a L G
l L L L

 
− − + − =  

 
,                    (24) 

 

where the following notations are traditionally used: yL  is the characteristic scale 
of variability in the y-coordinate in the vicinity of the focus; zL  is the characteristic 
scale of variability in the z-coordinate in the vicinity of the focus [20, 21]. 

We perform the following substitution of variables: ( ) ( ), η, φl z → , where 
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1/2

1/2η , φ
z

z l l
L

= = .                                              (25) 

 

In the new variables ( )η, φ , equation (24) takes the form of an equation with 
separable variables: 

 

2
η φηη

η φη 0
2

z z

y y

L LG G i G i G Q G
L L

− − − + = .                                      (26) 

 
 

The following notation is introduced here: 
 

2
z

y

Q i a L
L

 
= −  

 
.                                                (27) 

 

We will look for solutions using the split-variable method: 
 

( ) ( ) ( )η, φ η φG H F= .                                    (28) 
 

Then for ( )ηH  we obtain the following equation: 
 

( )2 *
ηη η 0

η η μ 0
2

z

y

LH i H Q H
L

− − + − = .                                        (29) 

 

Here *
0μ  is a separation constant. Further, we assume 

 

*
0 0μ μQ− ≡ .                                                   (30) 

 

The term with ηH  in equation (29) is eliminated by the following substitution: 
 

( ) 2
η η exp η

8
z

y

LH P i
L

 
=   

 
.                                     (31) 

 

For ( )ηP  we obtain the equation 
 

2
2

ηη 02η 1 μ 0
16 4

z z

y y

L LP P i
L L

  
+ − − − + =      

.                        (32) 

 

The asymptotic analysis of the one-dimensional vertical problem in the short-
wave approximation is classical (see Appendix). We shall dwell on it in more detail. 
Since we are looking for solutions localized in the neighborhood of some level z = z0, 
we see from equation (32) that the coefficient at 2η  must be positive. Consequently, 
we obtain the following condition for the existence of localized solutions: 

 

2

21 0 0 4
16

z
z y

y

L L L
L

 
− > ⇔ < <  

 
.                                       (33) 
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Condition (33) reveals that the branches of the parabola, which limits the inner 

region of transparency from the outer region of the shadow, must be practically 
parallel to each other. Otherwise, a vertical mode will not be formed and the wave 
will not approach the critical point indefinitely. Hence, if condition (33) is not 
fulfilled, a reflection mode from the critical layer [10] will take place. 

From equation (32) we determine the eigenvalues of the partition variable 0μ : 
 

( )
2

0 22 1 μ / 1 , 0,1, 2, ...
4 16

z z

y y

L Lm i m
L L

   
− + = − − =      

   
.                     (34) 

 

From (34) we obtain the eigenvalues 
 

1/22

0 2

161 δ 1μ , δ 1 , 0,1, 2, ...
4 2 2

yz

z

LL i m m
Ly L

   = − + ≡ − =         
                     (35) 

 

and eigenfunctions 
 

( )
1/4 1/2

2 22

2 2
0

ηη η 1 exp 1 , 0,1, 2, ...
16 2 16

z z
m

m y y

L LP H m
L L

∞

=

           = − − − =                 
∑ ,  (36) 

 

where mH  is the Hermite polynomial. 

We shall proceed to the definition of ( )φF – the second factor in the solution 
(28). From (26) we obtain the equation 

 

*
φ 0

φ μ 0z

y

Li F F
L

− + = .                                            (37) 

 

The solution of equation (37) has the following form: 
 

( ) μ *
0φ φ , μ μ y

z

L
F i

L
= ≡ − .                                       (38) 

 

We are going to describe the parameter μ  in detail: 
 

( )*
0 0

β sinθ 1 δ 1μ μ μ 2
4 2 2

y y
y

z z y

L L
i i Q i L i m

L L kU
    ≡ − = − + = − − + + +        

.      (39) 

 

From (39) it can be seen that the eigenvalues consist of two parts. The first part 
β sinθ 2y

y

i L
kU

 
− − 
  

 is barotropic, it coincides with the phase of the barotropic 

problem (12). The second part 
1 δ 1
4 2 2

i m  + +    
 is baroclinic. We finally obtain 

the following eigenvalues: 
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7 β sinθ δ 1μ
4 2 2y

y

i L m
kU

  = − + − + +  
   

.                                   (40) 

 

Substituting all the found parts of the solution into the original integral (22), 
we find the eigenfunctions: 
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21/2
μ

1 2
0 00

1/2
22 2
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Lz lk y z A k l H
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Lz l zi l y d l
L L L

+∞ ∞ ∞

= =

     Ψ = − ×       
      
 × − + +               

∑ ∑∫
           (41) 

 
 

Further, the obtained eigenfunctions (41) can be reduced using simple 
transformations to a degenerate hypergeometric function of some complex 
argument. However, for finding the asymptotics of the eigenfunctions, it is 
the integral notation (41) that is preferable. Despite the fact that the constructed 
eigenfunctions (41) are the functions of two physical variables (z and y), 
the integral expressing them is one-dimensional. Therefore, we will use the 
stationary phase method again. 

We rewrite the imaginary part of the integral (41) as follows: 
 

2 β sinθ δ 1exp ln
8 2 2y

y y

zi l y i L m l
L kU

     + + + − + +              
.                    (42) 

 

Differentiating (42) by variable l and equating it to zero, we obtain the equation for 
the stationary point lc (analogous to the dispersion relation): 

 

2

β sinθ δ 1
2 2

8

y
y

y c

L m
kUzy

L l

 − + 
 

+ = .                                   (43) 

 

From (43) we also obtain the following constraint on the number of modes that 
determine the vertical structure of the solution in the vicinity of the singular point: 

 

β sinθ
1 2
2 δ

y
y

L
kU

m + < 
 

.                                            (44) 
 

In doing so, as in the WKB approximation, it may turn out that such modes do not 
exist at all. 

If we rewrite relation (43) as follows 
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+

,            (45) 

it is not difficult to demonstrate that for a non-zonal flow the asymptotics of 
the eigenfunctions in the vicinity of the critical point will have the following form: 

( ) ( ) 1

1/4 1/2
1/2 22 2

1 2 2
0

, , ,ω ,ω 1 exp 1
16 2 16

c cz z
c m

m z y z y

z l z lL Lk y z A k l H
L L L L

µ−
∞

=

           Ψ = − − −                 
∑ . (46) 

Analyzing the asymptotics (46), we can say that the constructed solutions are 
not functions of (z, y) variables, but of some curvilinear variables, which have 
the following form: 

( )
2

2
, ,

8
8

y

y

z zy z y
L zy

L

 
 
  

→ +       +     

.        (47) 

However, this approach using curvilinear variables was also used when solving in 
the WKB approximation, in which formally the following substitution of variables 

took place: ( ), , zy z y
y

 
→  

 
. Therefore, the asymptotics of one-dimensional integrals, 

by and large, do not give any qualitatively new results different from the WKB 
solutions, except for condition (33). 

The behavior of Rossby waves in interaction with a non-zonal flow U


 is
schematically demonstrated in Fig. 2. In this case, there is no longer one but two 
critical layers and the nature of the Rossby wave tracks is very diverse. In addition 
to wave propagation mode 1 (adhering), there is mode 2 (double adhering) as well 
as mode 3 (overshooting). These modes are discussed in [3, 4, 22, 23]. 

Discussion and conclusions 
The classical two-dimensional reference equation describing 

the transformation of the solution in the vicinity of the focus has already been 
considered earlier [10, 20, 21]. The novelty of this work lies in the fact that this 
equation is generalized to the case of a non-zonal barotropic-baroclinic flow. 
A new complex term appears in the modified reference equation, and a nonlinear 
change of variables allows the problem to be reduced to an equation with separable 
variables. The mathematical analysis developed in [9, 10] makes it possible to take 
into account the features associated with the appearance of this term. However, 
another feature arises: the eigenvalues of the problem for the non-zonal flow, 
although structurally similar to the zonal case (the sum of the barotropic and 
baroclinic components), no longer have a limiting transition to the zonal case as 
the background flow inclination tends to zero. 
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It is known that on non-zonal flows the kinematics of Rossby waves has 
qualitative differences from the kinematics for strictly zonal flows [9, 10]. 
The main difference is that the non-zonal shear flow has two critical layers instead 
of one, as in the zonal flow, and in the vicinity of the first focus all mathematical 
calculations obtained in [10] are valid and the nonlinear substitution of variables 
allows one to find the corresponding spectral characteristics. As a result, 
the obtained eigenvalues are, as before, the sum of the barotropic and baroclinic 
problem but the principal point is that when the flow slope angle tends to zero, 
the eigenvalue spectrum of the non-zonal problem no longer tends to the spectrum 
for the zonal case and there is a jump-like behavior of eigenvalues. 

The second critical layer on a non-zonal flow lies in the transparency region 
and has a nontrivial kinematics in the form of overshooting [9, 10]. In this paper, 
we show that such nontrivial kinematics of Rossby waves is also accompanied by 
nontrivial behavior of the mode in the vicinity of the focus (critical layer). If for 
the zonal case the focus is an absolute absorber of Rossby waves, and 
the transmission coefficient is exponentially small, then in the case of carrying out 
the overshooting mode of Rossby waves on a non-zonal flow, the problem 
becomes extremely sensitive to the initial data. In this case, absolutely opposite 
options are possible: from the complete absorption of the wave by the critical layer 
to its complete passage through the critical layer. In the second case, 
the transformation of the Rossby wave vertical mode does not occur. 

In the previous work, the authors solved the problem of a strictly zonal flow 
[10]. An alternative, extremely simple, and physically understandable way to 
construct a reference solution was found. This approach was previously developed 
in plasma theory and later transferred by N. S. Erokhin and R. Z. Sagdeev to 
the water waves [20, 21]. Our solution is constructed using the Fourier analysis and 
some original changes of variables. In the appendix of [10], the constructed 
solution is identified and it is demonstrated that it exactly corresponds to 
the known solution in terms of a degenerate hypergeometric function of some 
complex argument with integration in the complex plane over a certain circle, as 
well as primary and secondary quantization using some reasoning about self-
similarity. We show that behind all this conglomeration of plasma physics, obscure 
to specialists in the field of geophysics, there is a rather simple physical essence: 
there is a certain spatial curvature of the coordinates, and along with it, of 
the resulting solution. 

In this regard, the critical layers are extremely stable, and this is the result of 
this work. We show that, at a qualitative level, the addition of non-zonality does 
not change the result obtained for the zonal case. This leads to the conclusion that 
the global processes of energy exchange in the ocean are concentrated in narrow 
regions, and resonance processes (where the background flow velocity is compared 
with the phase velocity of the wave disturbance) are extremely important for 
understanding the generation of waves and eddies by large-scale ocean currents 
(for more details, see [24]). 

Thus, for the non-zonal problem of Rossby wave propagation in the vicinity of 
the focus, there is rather no analytical unambiguous prediction of the vertical mode 
behavior. The spectral problem is extremely sensitive to the initial data, and no 
limiting transition to the zonal case is observed. 
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Appendix 
Vertical focusing in a short-wave approximation 

Equation (3) for the flows with vertical variability can have solutions strongly 
localized in the vicinity of some fixed horizontal level z = z0 where the phase 
velocity of the wave in longitudinal direction x coincides with the extremum of 
the main flow velocity field (the so-called critical layer) and attenuates in the rest 
of the region. The type of the velocity field extremum is deduced in the process of 
problem-solving and the boundary conditions for the Sturm – Liouville problem 
will be fulfilled automatically. In this case, the assumption that the localization 
level of the vertical mode does not coincide with the boundaries of the region 
vertically is fulfilled due to the exponential attenuation of the solution outside 
the localization level of the solution. 

It is important to note that the solutions presented below do not claim to be 
unique and complete and describe only one of the possible scenarios determined by 
fulfilling the necessary conditions. The specificity of this problem is that 
the passage of the critical layer by the wave is usually associated with a spectrum 
transformation into the short-wave region. For Rossby waves on a zonal flow, 
the passage through the critical layer also unambiguously entails a short-wave 
transformation. 

However, if the flow is not strictly zonal, two scenarios associated with 
passage through the critical layer are available. The first scenario is that the critical 
layer and the boundary of the transparency region coincide. When approaching 
the critical layer, a short-wave transformation of the wave occurs. Reaching the 
critical layer is asymptotic: the wave approaches the critical layer indefinitely in 
time. The second scenario is that the critical layer is located inside the region of 
transparency. Here the modes of passing the critical layer at finite values of wave 
numbers are possible and the wave passes the critical layer virtually unresponsive 
to its presence. Which of the two scenarios will be realized depends on the initial 
conditions of the problem. In this sense, the solution is highly sensitive to 
the selection of the initial data. 

We consider the first scenario when a short-wavelength transformation occurs 
during the passage of the critical layer. For a solution strongly localized in 
the vicinity of the vertical level z = z0 and attenuating in the rest of the region, 
equation (32) can be approximated as follows: 

 

( ) ( )2
1 0 2 0 1

1 0
2zz P P z z Ψ + + − Ψ =  

,                                   (A.1) 

 
where 

0

β2 2
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z z

K
P S k l

kU
=

 
≡ − + − − 

,                                     (A.2) 
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K k U
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=

 
≡ −  
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,                                        (A.3) 
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.                          (A.4) 

 
Equation (32) obtained earlier is analogous to equation (A.1), which has the 
following localized solutions: 
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∑
.    (A.5) 

 
Here ( ) , 0,1, 2,...nH x n =  are the Hermite polynomials. 

From the relation (Kamke, E., 1961. Handbook of Ordinary Differential 
Equations. Moscow: Fizmatlit, 408 p.) 

 

( )
1/2

2
02 1

2
Pn P

−
 + = − 
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                                                   (A.6) 

 
we find the dispersion relations 
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                               (A.8) 

 
Expressions (A.7) and (A.8) are analogous to the dispersion relation for 
the barotropic problem. Let us note that the following restriction was made in this 
case: 

 
0 0P > .                                                       (A.9) 

 
Taking expression (A.2) into account, we find that the signs of the expressions 

βK  and ( )ω k U− coincide. Next, the following condition must be satisfied 
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2 0P < .          (A.10) 

Taking into account (A.3), we obtain 
0β 0z z z zK k U = < . Omitting the details, we 

can state the following result. Dispersion relation (A.7) corresponds to the case 
where the wave passes through the critical layer first, then bounces off a region of 
large background flow velocities, and then approaches the critical layer from 
the back side, asymptotically approaching the main flow velocity maximum on 
the large side. Dispersion relation (A.8) corresponds to the case where the wave 
approaches the critical layer asymptotically approaching the main flow velocity 

minimum on the lower side. At the zonal flows ( )θ 0= , the critical layer is
realized only for westward flows and only in the form of asymptotics (A.8). (Here 
we adhere to the terminology adopted in oceanography, where a westward flow is 
a flow directed to the west, whereas in atmospheric physics a westward wind is 
a wind propagating from the west). For westward zonal flows, the vertical level z0 

on the z coordinate, at which the mode is focused, is the level of the absolute 
maximum velocity of the main flow. In this case, reaching the critical layer is 
asymptotic in time and is accompanied by a short-wave transformation. 

For non-zonal flows, the situation breaks down into particular cases depending 
on the initial parameters of the problem. In this case, critical layers can be realized 
both for positive values of the main flow velocity and for negative ones. What 
exactly will happen to the wave in the vicinity of the critical layer for the non-zonal 
case depends on the initial position of the wave (from which side and at what angle 
the wave approaches the critical layer) and on the parameters of the main flow 
velocity field in the vicinity of the extremum along the vertical coordinate. On 
a non-zonal flow, the following options are possible: the passage of the wave 
through the critical layer and vertical focusing on the extremum of the main flow 
velocity field. 

We shall note one important result, which is obtained from formula (A.7). For 
both zonal and non-zonal flows, the vertical variability of the velocity field leads to 
one common property: if the vertical structure of the mode is focused on 
the extremum of the velocity field, then there is a limit on the number of modes 
that can be inscribed in the vicinity of this level: 

( )
0

β
1/21/2

β

2 1
z z z z

K
n

S K k U−
=

+ <
  

.          (A.11) 

This fact is well known for Rossby waves (LeBlond, P.H. and Mysak, L.A., 1978. 
Waves in the Ocean. Amsterdam: Elsevier, 602 p.). However, in this problem, 
the baroclinicity can lead to the absence of the vertical mode at all. Such cases in 
the numerical calculation of the vertical eigenvalue problem were considered in the 
works by P.D. Killworth and J.R. Blundell (Killworth, P.D. and Blundell, J.R., 
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2003. Long Extratropical Planetary Wave Propagation in the Presence of Slowly 
Varying Mean Flow and Bottom Topography. Part I: The Local Problem. Journal 
of Physical Oceanography, 33(4), pp. 784-801. doi:10.1175/1520-
0485(2003)33<784:LEPWPI>2.0.CO;2; Killworth, P.D. and Blundell, J.R., 2005. 
The Dispersion Relation for Planetary Waves in the Presence of Mean Flow and 
Topography. Part II: Two-Dimensional Examples and Global Results. Journal of 
Physical Oceanography, 35, pp. 2110-2133. doi:10.1175/JPO2817.1). For 
solutions (A.5), we introduce the definition of the vertical variability scale of 
solution D: 
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    − ± +    

.         (A.12) 

 

Formula (A.12) gives a characteristic scale of vertical variability and also 
determines the so-called self-similarity of the solution. It is easy to see that in 
the short-wavelength limit the vertical D and longitudinal L scales of the solution 
are linked by the relation 1 1/2D L− ∼ . 
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