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Abstract 
Purpose. The object of the work is to construct an effective numerical method to solve the problem 
for a stream function and to determine subsequently the total flow components in the models of fluid 
wind motion in a reservoir. Its efficiency was analyzed, and the work of the proposed difference 
approximations was illustrated using a class of test problems with the known analytical solutions. 
Methods and Results. The difference scheme and the corresponding computational algorithm were 
constructed based on the projection variant of the integro-interpolation method, which permitted 
(within a single approach) to solve the problem for the stream function, to calculate its derivatives, 
and to determine subsequently the total flow horizontal components. 
Conclusions. The used discretization method permits to preserve automatically the most important 
features of the initial differential model at switching to its discrete analog. In particular, its application 
makes it possible to reproduce correctly the behavior of the stream function derivatives, and hence, 
the behavior of the total flow horizontal components in the areas of its highest intensity. 
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Introduction 
When solving many problems of hydrothermodynamics, special integral 

functions are used. In particular, when modeling the fluid dynamics in a reservoir 1, 
the integral stream function or the level surface is usually used. The corresponding 
problems belong to the class of singularly perturbed ones [1] and can form areas 
with large solution gradients, the so-called boundary 2 or internal transition layers. 
It is known that in these problems there are increased requirements for difference 

1 Marchuk, G.I. and Sarkisyan, A.S., 1988. Mathematical Modeling of the Ocean Circulation. 
Moscow: Nauka, 302 p. (in Russian). 

2 Vasilyeva, A.B. and Butuzov, V.F., 1973. [Asymptotic Expansions of Solutions of Singularly 
Perturbed Equations]. Moscow: Nauka, 272 p. (in Russian). 
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schemes that implement them numerically [2]. Additional difficulties appear when 
it is required to calculate the derivatives of the solution of a singularly perturbed 
boundary value problem, namely, it needs to be carried out when determining 
the horizontal components of the total flow. 

All of the above explains the relevance of the problem being solved. These 
problems can be solved if special discretization methods are applied, which allow 
auto-saving of the most important properties during the transition from the original 
differential model to its discrete counterpart. The present study is devoted to 
the implementation of one of these methods. Comparison of the numerical solution 
with the available exact analytical analogue makes it possible to judge the accuracy 
of the algorithm used. The discretization method used in the paper permitted to 
correctly reproduce the behavior of the stream function derivatives, and hence 
the horizontal components of the total flow. 

 
Problem statement 

A computational algorithm for a simplified three-dimensional stationary model 
of fluid wind currents in a reservoir will be constructed. The fluid is assumed to be 
homogeneous, and the model lacks the advection and horizontal diffusion 
mechanisms. Such models belong to the Ekman type models [3] and are used in 
the first approximation to describe the pattern of streams in reservoirs of various 
nature. In addition, if it is possible to find classes of analytical solutions in such 
models, then it is convenient to use them for testing numerical methods and 
corresponding algorithms used in solving general problems of reservoir 
hydrodynamics. 

It is assumed that the problem is considered in a dimensionless setting. 
Suppose that the reservoir surface in the xy plane is shaped like a rectangle: 

 

[ ] [ ]0Ω 0, 0,r q= × ,                                                     (1) 
 

its depth 0H >  is constant, the x axis is directed to the east, the y axis – to 
the north and the z axis – vertically down. In a 3D region  
 

( ) ( ){ }0Ω , , | , Ω , 0x y z x y z H= ∈ ≤ ≤                                         (2) 
 

the following system of equations is considered:  
 
 

 

( )
0

,

, , , ,

0,

s

s

P ulv k
x z z

P vlu k x y z
y z z

u v w
x y z

 ∂ ∂ ∂ − = − +  ∂ ∂ ∂ 
 ∂ ∂ ∂  = − + ∈Ω  ∂ ∂ ∂ 
∂ ∂ ∂

+ + =
∂ ∂ ∂

                                (3) 

 

supplementing it with boundary conditions 
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( ){ }
( ){ }

( ){ }

0

0

0

0

0

0, , Ω : τ , τ , 0,

, , Ω : τ , τ , 0,

0 , , Ω : 0.

x y

b b
x y

x y

u vz x y k k w
z z

u vz H x y k k w
z z

z H x y Un Vn

∂ ∂ = ∈ = − = − = ∂ ∂
∂ ∂

= ∈ = − = − =
∂ ∂

 ≤ ≤ ∈∂ + =



                  (4) 

 

In (4) there are horizontal components of the total flow  
 

0 0

( , ) ( , , ) , ( , ) ( , , )
H H

U x y u x y z dz V x y v x y z dz= =∫ ∫                              (5) 

 

and the following variant of the parametrization of near-bottom friction is 
accepted: 
 

τ μ , τ μ , μ const 0.b b
x yU V= = ≡ >                                     (6) 

 

In accordance with Stommel works [4, 5], it is assumed that 

0 β , const 0.l l y k= + ≡ >                                                (7) 
 

The tangential wind stress will be given by the formulas 
[ ]
[ ]

1 2

1 2

τ cos( ) sin( ) cos( ),

τ cos( ) sin( ) sin( ),
x l l m

y s s p

F r x F r x q y

G r x G r x q y

 = +


= +
                                 (8) 

 

in which the following designations are accepted: 

π π π π, , , ,

, 0,1, 2, ... ; , 1, 2, ...

l s m p
l s m pr r q q

r r q q
l s m p

= = = =

= =
                                    (9) 

 

Thus, the wind model contains four real ( 1 2 1 2, , ,F F G G ) and four integer 
( , , ,l m s p ) numerical parameters, the choice of which allows to describe a fairly 
general wind situation. Moreover, to describe the components of tangential wind 
stress, a linear combination of expressions (8) can be used, and the problem solution 
can be found as a linear combination of the corresponding "elementary" solutions. 
Note that Stommel used a wind model of the form as follows 

 

πτ cos , τ 0,x y
yF

q
 

= − = 
 

                                    (10) 

 

which is obtained from expressions (8), (9) when 

1 2 1 2, 0, 0, 1.F F F G G l m= − = = = = =  
 

In [6, 7], analytical solutions to problem (1) – (7), (10) were found. In [8], 
analytical expressions for flows were obtained from relation (5) in problem (1) – 
(9), taking into account general wind situation. These analytical solutions are used 
in the present study to test the proposed computational algorithms. Let us transform 
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the problem (1) – (9): each equation is integrated in the formula (3) with respect to 
the variable z in the range from 0 to H, taking into account the boundary conditions 
(4); then the pressure gradients from the obtained equations are eliminated using 
the operation of cross differentiation. As a result, we come to the following 
problem – definition of ( ) ( ), , ,U x y V x y  functions: 

( )

( )

0

0

0

ττμ β ,

0, , Ω ,

0, , Ω .

yx

x y

U V V
y x y x

U V x y
x y

Un Vn x y

∂   ∂∂ ∂
− − = −  ∂ ∂ ∂ ∂ 

 ∂ ∂ + = ∈
∂ ∂

 + = ∈∂



                                  (11) 

 

To solve it, the integral stream function ( ),x yΨ  is introduced according to 
the formulas 

Ψ Ψ, .U V
y x

∂ ∂
= = −
∂ ∂

                                        (12) 

 

 Then (12) is substituted into (11) and, denoting 
 

( )
ττ, yxf x y

y x
∂∂

≡ −
∂ ∂

,                                                  (13) 

 

the following problem to determine ( )Ψ ,x y is obtained: 
 

( )
2 2 0

02 2

0

Ψ Ψ Ψμ β , , ( , ) Ω ,

Ψ 0, ( , ) Ω .

f x y x y
x y x

x y

  ∂ ∂ ∂
+ + = ∈  ∂ ∂ ∂  

 = ∈∂

                      (14) 

 
Numerical method for solving problem (12) - (14)   
To construct it, a projection version of the integro-interpolation method 

(PVIIM), which was proposed in [9] and studied in [10], is used. This technique, 
within the unified approach framework, permits to construct a difference scheme 
for the numerical solution of problem (14) and obtain formulas for approximating 
the derivatives of this solution. The latter is necessary for U  and V calculation 
according to formulas (12). The works [11–13], where a similar problem was 
solved, also should be noted. 

In 0Ω region the computational grid is considered: 
 

{ω ( , ) ( 1) , ( 1) ,

1, , 1, , , .
1 1

h i j i jx y x i x y j y

r qi n j k x y
n k

≡ = − ∆ = − ∆

= = ∆ = ∆ = 
− − 

                               (15) 
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Let the grid function { },Ψi j , defined on this grid, consist of approximate 

values for ( ){ }Ψ ,i jx y quantities – the exact solution to problem (14). The PVIIM 

technique is applicable within the framework of successive approximation of 
the differential equation from expression (14): first with respect to the x variable, 
then with respect to the y variable. Equation (14) can be rewritten in the following 
form: 

 

( ) ( )
2 2

2 2

Ψ Ψ Ψμ β , μ ,f x y g x y
x x y

∂ ∂ ∂
+ = − ≡

∂ ∂ ∂
.                            (16) 

 

In accordance with the PVIIM, on an arbitrary grid cell, the test function 
[ ]1,i ix x + is considered, equation (16) is multiplied by ( )λ x and the result is 
integrated over the cell [ ]1,i ix x + , including by parts (the y variable is perceived as 
a parameter), as a result, the following integro-difference identity is obtained: 

 

( ) ( )
1 1 12

2

Ψ λ λ λμ λ Ψ βλ μ Ψ μ β , λ .
i i i

i ii

x x x

x xx

dx g x y x dx
x x x x

+ + +  ∂ ∂ ∂ ∂ + − + − =   ∂ ∂ ∂ ∂    
∫ ∫       (17) 

 

The test functions ( ) ( ) ( ) ( )0 1λ u λx x in identity (17) are selected, assuming 
that they are solutions of the equation 

 

( )
2

12

λ λμ β 0, , ,i ix x x
x x +

∂ ∂
− = ∈

∂ ∂
 

 

but at the same time satisfy various boundary conditions: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0
1

1 1
1

λ 1, λ 0,

λ 0, λ 1.
i i

i i

x x

x x
+

+

= =

= =
 

 

This choice allows to turn into zero the integral on the left side of identity (17). 
It is obvious that for ( )1,i ix x x +∈  

 

( ) ( )
( )

( ) ( )
( )β μ β μβ μ

0 1
β μ β μ

1λ , λ .
1 1

i ix x x xx

x x

e e ex x
e e

− −∆

∆ ∆

− −
= =

− −
                   (18) 

 

The integral on the right side of identity (17) will be approximated using 
the following formulas: 

 

  
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

0 0

1 1
1

, λ , λ ,

, λ , λ .

i i

i i

i i

i i

x x

i
x x

x x

i
x x

g x y x dx g x y x dx

g x y x dx g x y x dx

+ +

+ +

+

≈

≈

∫ ∫

∫ ∫
                           (19) 

Note that more accurate approximations of the integrals in (17) can lead to 
a more accurate difference scheme, but we will focus on the variants above 
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(formula (19)). Let us substitute ( )0λ λ=  into identity (17) and, using 
the designations 

 

( )β 1, θ θ ctg ,
2μ

xR R R
R

∆
= = = −  

 

1 1Ψ Ψ Ψ ΨΨ , Ψ ,i i i i
x i x iD D

x x
+ −+ −− −

= =
∆ ∆

 
 

as well as necessary calculations, taking into account formulas (18) and (19), we 
rewrite it in the following form  
 

( ) ( )Ψ 1 θμ μ 1 θ 1 Ψ , , 1, 1.
2

i
x i iR D g x y x i n

x
+∂ +

− +  + +  = ∆ = − ∂
             (20) 

 

After substituting the ( )1λ λ=  function into identity (17), we obtain 
 

( ) ( )1
1

Ψ 1 θμ μ 1 θ 1 Ψ , , 1, 1.
2

i
x i iR D g x y x i n

x
++

+

∂ −
−  + −  = ∆ = − ∂

        (21) 
 

Let us move on to approximation with respect to the y variable. Considering 
that the ( ),g x y function on the right-hand sides of relations (20) and (21) was 
determined by formulas (16), these relations are re-written in the following form 

 

( ) ( ) ( )

( )

2

2

Ψ Ψ2μ , μ μ 1 θ 1 Ψ
1 θ

, 1, 1,

i i
i x if x y R D

y x x

P y i n

+∂ ∂ = + −  + +  ≡  ∂ ∆ + ∂ 

≡ = −

        (22) 

 

( ) ( ) ( )

( )

2
1 1

12

Ψ Ψ2μ , μ μ 1 θ 1 Ψ
1 θ

, 1, 1.

i i
i x if x y R D

y x x

Q y i n

++ +
+

∂ ∂ = + − +  + −  ≡  ∂ ∆ − ∂ 

≡ = −

       (23) 

 

Taking in account the PVIIM for equation (22), it is re-written for arbitrary 
grid cell 1,j jy y +   : 

 

( )
2

12

Ψμ , , .i
j jP y y y y

y +

∂  = ∈ ∂
                                           (24) 

 

The integro-difference identity analogue of (17) for equation (24) will look as 
follows: 

 

( ) ( )
1 1 12

2

Ψ η ημ η Ψ μ Ψ μ η .
j j j

j jj

y y y
i

i i
y yy

dy P y y dy
y y x

+ + ∂ ∂ ∂
− + = ∂ ∂ ∂ 

∫ ∫                (25) 

 

Test functions ( ) ( )0 1η , η  will be considered as solutions to the problems  
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( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

12

0 0
1

1 1
1

ημ 0, , ,

η 1, η 0,

η 0, η 1.

j j

j j

j j

y y y
y

y y

y y

+

+

+

∂
= ∈

∂

= =

= =

 

 

These functions are easy to find 
 

( ) ( ) ( ) ( )10 1η , η .j jy y y y
y y

y y
+ − −

= =
∆ ∆

                                        (26) 
 

The test functions (26) are substituted into identity (25) and approximations of 
integrals on the right side of expression (25), similar to approximations from 
formulas (19), are used: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

0 0

1 1
1

η η ,

η η ,

j j

j j

j j

j j

y y

j
y y

y y

j
y y

P y y dy P y y dy

P y y dy P y y dy

+ +

+ +

+

≈

≈

∫ ∫

∫ ∫
 

as well as designations  
, 1 , , , 1

, ,

Ψ Ψ Ψ Ψ
Ψ , Ψ ,i j i j i j i j

y i j y i jD D
y y

+ −+ −− −
= =

∆ ∆
 

 

as a result, finite-difference relations are obtained  
 

( ),
,

Ψ
μ μ Ψ , 1, 1,

2
i j

y i j j
yD P y j k

y
+∂ ∆

− + = = −
∂

                              (27) 

 

( ), 1
, 1

Ψ
μ μ Ψ , 1, 1.

2
i j

y i j j
yD P y j k

y
+ +

+

∂ ∆
− = = −

∂
                           (28) 

 

Using formula (22), from expressions (27) and (28) the following relations 

( )1, 1, 1, 1i n j k= − = − are obtained: 
 

( )

( )

,
,

,
,

Ψ1 θ μ μ Ψ ,
2 2

Ψ1 μ μ 1 θ 1 Ψ ,
2

i j
y i j i j

i j
x i j

yD f x y
y y

R D
x x

+

+

∂ + ∆
− + = ∆ ∂ 

∂ 
= − +  + +   ∆ ∂ 

                          (29) 

 

( )

( )

, 1
, 1

, 1
, 1

Ψ1 θ μ μ Ψ ,
2 2

Ψ1 μ μ 1 θ 1 Ψ .
2

i j
y i j i j

i j
x i j

yD f x y
y y

R D
x x

+ +
+

+ +
+

∂ + ∆
− + + = ∆ ∂ 

∂ 
= − +  + +   ∆ ∂ 

                           (30) 
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Let us carry out similar reasoning for relations (23). As a result, another group 
of relations ( )1, 1; 1, 1i n j k= − = − is obtained: 

 

( )

( )

1,
1, 1

1,
,

Ψ1 θ μ μ Ψ ,
2 2

Ψ1 μ μ 1 θ 1 Ψ ,
2

i j
y i j i j

i j
x i j

yD f x y
y y

R D
x x

+ +
+ +

+ +

∂ − ∆
− + = ∆ ∂ 

∂ 
= −  + −   ∆ ∂ 

                         (31) 

 

( )

( )

1, 1
1, 1 1

1, 1
, 1

Ψ1 θ μ μ Ψ ,
2 2

Ψ1 μ μ 1 θ 1 Ψ .
2

i j
y i j i j

i j
x i j

yD f x y
y y

R D
x x

+ + +
+ + +

+ + +
+

∂ − ∆
− + + = ∆ ∂ 

∂ 
= −  + −   ∆ ∂ 

                       (32) 

 

  
Relations (29) – (32), written for an arbitrary grid cell 

[ ]1 1, , , 1, 1, 1, 1i i j jx x y y i n j k+ + × = − = −  , provide full information necessary to 
construct approximations of both the equation and all necessary derivatives in 
problem (12) – (14). Indeed, in formula (30) the index j is replaced by j – 1, this 
can be carried out at the internal nodes of the grid, then the result is added with 

equation (29), in the end, we eliminate the derivative ,Ψi j

y
∂

∂
: 

( ) ( )

( )

, ,

,
,

1 θ μ Ψ Ψ ,
2

Ψ1 μ μ 1 θ 1 Ψ .

y i j y i j i j

i j
x i j

D D f x y
y

R D
x x

+ −

+

 +
− − + = ∆ 

∂ 
= − +  + +   ∆ ∂ 

 

The last formula allows to obtain an approximation of the derivative ,Ψi j

x
∂

∂
, 

which can be used at the internal nodes of the left vertical boundary: 
 

( ) ( ) ( ),
, , ,

Ψ 1 θ 1 11 θ 1 Ψ Ψ Ψ , .
2 μ

i j
x i j y i j y i j i jR D x D D f x y

x y
+ + −∂  +

=  + +  + ∆ − −  ∂ ∆ 
   (33) 

 

Similarly, in (31) the index i is substituted by i – 1, and in in formula (32) i is 
substituted by i – 1 and j by j – 1. The results obtained are added. It provides 

the opportunity to eliminate the derivative ,Ψi j

y
∂

∂
: 

( ) ( ) ( ),
, , ,

Ψ1 θ μ 1Ψ Ψ , μ μ 1 θ 1 Ψ .
2

i j
y i j y i j i j x i jD D f x y R D

y x x
+ − −∂  −

− − + = −  + −     ∆ ∆ ∂   
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From the latter expression, we obtain an approximation of the derivative 
,Ψi j

x
∂

∂
for the internal nodes of the right vertical boundary: 

 

( ) ( ) ( ),
, , ,

Ψ 1 θ 1 11 θ 1 Ψ , Ψ Ψ .
2 μ

i j
x i j i j y i j y i jR D x f x y D D

x y
− + −∂  −

=  + −  + ∆ − −  ∂ ∆ 
   (34) 

 
Let us consider formulas (33) and (34) at the internal nodes of the region, multiply 

the first by 1 θ
2
− , the second by 1 θ

2
+ , add the results and obtain the relation 

 

( ) ( ),
, ,

Ψ 1 θ 1 θ1 θ 1 Ψ 1 θ 1 Ψ ,
2 2

i j
x i j x i jR D R D

x
+ −∂ − +

=  + +  +  + −    ∂
             (35) 

 

which can be used to approximate the derivative ,Ψi j

x
∂

∂
at the internal nodes of 

the grid region. Now, if formula (34) is subtracted from expression (35), then 

the derivative ,Ψi j

x
∂

∂
 is eliminated and an approximation of equation (14) at 

the internal nodes of the grid area is obtained: 
 

( ) ( ){ }

( ) ( )

, ,

, ,

μ 1 θ 1 Ψ 1 θ 1 Ψ

μ Ψ Ψ , .

x i j x i j

y i j y i j i j

R D R D
x

D D f x y
y

+ −

+ −

 + +  −  + −  +   ∆

+ − =
∆

                        (36) 

Let us move on to constructing an approximation for the derivative ,Ψi j

y
∂

∂
. In 

relation (30), the index j is replaced by j – 1, the result is subtracted from (29), and 
finally the following approximation is obtained 

 

( ),
, ,

Ψ 1 Ψ Ψ ,
2

i j
y i j y i jD D

y
+ −∂

= +
∂

                                          (37) 

 

which can be used in the internal nodes of the grid region. Next, in (31) i is 
replaced by i – 1, the result is added with formula (29), thereby excluding 

the derivative ,Ψi j

x
∂

∂
and obtain 

 

( )

( ) ( ){ }

,
,

, ,

Ψ1 μ μ Ψ ,
2

1 μ 1 θ 1 Ψ μ 1 θ 1 Ψ .
2

i j
y i j i j

x i j x i j

yD f x y
y y

R D R D
x

+

+ −

∂ ∆
− + = ∆ ∂ 

=  + +  −  + −    ∆

 

 

From the last relation, the formula for the internal nodes of the lower 
horizontal boundary is found: 
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∆
−

     (38) 

Finally, we consider formula (30), replace the index j with j – 1, and in relation 
(32) replace i with i – 1 and j with j – 1. After adding the results, we obtain 

 

( )
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, 1
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Ψ1 μ μ Ψ ,
2
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−
+
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∂ ∆
⋅ − + + = ∆ ∂ 

=  + +  −  + −    ∆

 

 

The formula for the internal nodes of the upper horizontal boundary follows 
from this expression: 

 

( ) ( ){ } ( ),
, , ,

Ψ
Ψ 1 θ 1 Ψ 1 θ 1 Ψ , .

2 2μ
i j

y i j x i j x i j i j
y yD R D R D f x y

y x
− + −∂ ∆ ∆

= −  + +  −  + −  +   ∂ ∆
         (39) 

  
The numerical solution to problem (12) – (14) is found by formulas (36) 

together with the corresponding boundary conditions. The problem is solved 
iteratively by one of the known methods [14]. Further, formulas (33) – (35) are 

used to calculate the derivatives ,Ψi j

x
∂

∂
, and formulas (37) – (39) are used to 

calculate the derivatives. Formulas (33), (34), (38) and (39) for determining 
the derivatives at the boundaries of the region (when solving problem (12) – (14) in 
a rectangle) are significantly simplified due to the boundary condition for 
the Ψ function. It should also be noted that the difference scheme (36) was tested 
in solving problem (14) in [15] and turned out to be more accurate than the known 
schemes from papers 3,4 and [2, 16]. 

 
Results of numerical experiments 

We are to illustrate bellow the operation of the proposed numerical methods 
with the results of the experiments with problem (1), (12) – (14), where 
the following values of the main parameters are chosen: 

 

11, 5, μ 0,01, β 1.r q= = = =  
 

The model wind (formulas (8), (9)) is determined by the values  
 

1 2 1 21, 0, 1, 0, 0, 1, 1, 1F F G G l m s p= = = − = = = = = , 
 

at which a cyclone forms over the water area (Fig. 1).  
 

3 Samarsky, A.A., 1983. The Theory of Difference Schemes. Moscow: Nauka, 616 p. (in Russian). 
4 Buleev, N.I., 1983. [Spatial Model of Turbulent Exchange]. Moscow: Nauka, 344 p. (in Russian). 
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F i g.  1. Cyclonic wind field 
 

The criterion for the computational algorithm quality was the relative error 

( ) ( )
Φ Φ

Φ 100 %
Φ

Er ∞

∞

−
= ⋅ , 

 

which was calculated in the grid norm 

Φ max Φ
hω∞

= . 
 

Here Φ  is the exact problem solution projected onto the ωh grid (in this case, 
found using the formulas in [8]); Φ is an approximate solution to the same problem 
calculated using the corresponding algorithm. Let Ψ, ,U V be the solution to 
problem (1), (12) – (14) found by the aforementioned method. Fig. 2 shows 
the analytical field of the stream function, which visually practically does not differ 
from that found numerically [15]. 

 

 
F i g.  2. Stream function for the given parameters 
 

Fig. 3 shows the analytical field of the total flows, obtained based on 
the formulas from [8]. 
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F i g.  3. Analytical field of the total flows 
 

The presented field is characterized by an intense boundary layer near the left 
boundary. The calculated field using expression (36) visually practically does not 
differ from that shown in Fig. 3, so it is not included in the study. In this case, it is 
advisable to judge the accuracy of calculations by the relative error values. 

When calculating total flows ,U V  using standard formulas 
 

( ),1 ,1 , , , , ,
1Ψ , Ψ Ψ , 2, 1, Ψ , 1, ,
2i y i i j y i j y i j i k y i kU D U D D j k U D i n+ + − −= = + = − = =     (40) 

 

( )1, 1, , , , , ,
1Ψ , Ψ Ψ , 2, 1; Ψ , 1,
2j x j i j x i j x i j n j x n jV D V D D i n V D j k+ + − −= − = − + = − = − =    (41) 

 

the field shown in Fig. 4 is obtained. 

 
 

F i g.  4. Field of the total flows calculated by formulas (40) and (41) 
 

After solving problem (14) for the stream function using formula (36), U and 
V were determined in two ways: by the aforementioned method and using formulas 
(40), (41). The values of the corresponding errors calculated on grids with different 
numbers of nodes are given in the table. The values of the relative errors 

( )ΨEr indicate the iterative process convergence due to the comparison of 
the obtained results with the exact solution. It is easy to check that the U values 
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obtained using formulas (37) – (39) and the U values calculated in accordance with 
formula (40) are the same, so the ( )Er U errors are not given in the table. 

 
Error values at increase in the number of grid nodes 

 

Number of 
grid nodes ( )ΨEr  ( )Er U  ( )Er V  ( )Er V  

  23×11 0.64259 1.06010 0.05480 98.0685 

  51×23 0.26472 0.22237 0.02779 95.5197 

111×51 0.10534 0.07869 0.01187 90.0591 

  221×101 0.04036 0.03189 0.00471 80.2305 

  441×201 0.01247 0.01018 0.00148 63.8351 
 

Conclusion 
According to the results of numerical experiments, even with a sufficiently 

accurate solution to the stream function problem, calculation of the horizontal 
components of the total flow may turn out to be inefficient if the specifics of 
the problem are not taken into account. The algorithms used give a fairly good 
accuracy of reproducing the solution of the equation for the stream function. On 
a fine grid, the error is hundredths of a percent in the norm used. The technique 
proposed in this paper allows to solve the stream function problem within 
the framework of a unified approach and calculate the derivatives of this solution, 
which guarantees the accuracy of determining the horizontal components of 
the total flow. The results of the study can be used in simulation of dynamic 
processes in the sea. 
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