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Abstract 
Purpose. The study is purposed at deriving a finite-difference equation of potential vorticity for a three-
dimensional baroclinic fluid with regard for diffusion and viscosity in a quasi-static approximation. Its 
terms are calculated and analyzed in numerical modeling of the Black Sea circulation for two periods – 
winter and summer 2011. 
Methods and Results. A finite-difference equation for the potential vorticity of a stratified 
incompressible fluid is obtained for a system of discrete equations of sea dynamics in the hydrostatic 
approximation allowing for viscosity, diffusion, river inflow, water exchange through the straits and 
atmospheric forcing. It is shown that the main contribution to the potential vorticity is made by its 
vertical component. The horizontal components are predominant in the areas of river inflow and water 
exchange through the straits. The vertical component of potential vorticity, except for the river inflow 
zones, is conditioned by the value and structure of an absolute eddy. The main contribution in the sea 
upper layer of the coastal region, its northwestern part and along the Anatolian coast is made by 
the advection of potential vorticity. At the lower horizons, its highest values are observed in the coastal 
strip, at that its character is more pronounced near the southern coast of the sea. 
Conclusions. Analysis of the potential vorticity equation has shown that the value of the advective 
terms is conditioned by the divergence of the product of nonlinear terms in the motion equations and 
density gradient. The main conclusion consists in the following: locally, the sum of vertical and 
horizontal advection of potential vorticity is two orders of magnitude less than each of them separately. 
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Introduction 
To study circulation in the atmosphere and ocean, analysis of potential vorticity 

(PV) is of fundamental importance, since PV characterizes the role of nonlinear 
processes in fluid dynamics. In the field of potential mass force in the absence of 
viscosity and density diffusion (ideal fluid), PV is an invariant [1] and therefore its 
structure determines the trajectory of fluid particles preserving potential vorticity. 
The difficulty is that in reality the abovementioned conditions are not met or only 
met in an approximate form, since friction, diffusion and diabaticity change the PV 
of seawater particles. When analyzing the equation of potential vorticity of 
a stratified fluid, it is possible to estimate the influence of nonlinear and diffusion 
factors on its evolution. 

The importance of Ertel’s theorem for research in the field of physical 
oceanography is discussed in [2]. It emphasizes that for large-scale water 
movements, the appropriate form of vorticity is potential vorticity, which includes 
such physically different elements as velocity vortex and seawater density. Ertel's 
theorem, which most other vorticity theorems are derived from, determines dynamic 
evolution of potential vorticity. In turn, the absence of potential vorticity means 
an inertial-gravitational mode of motion that depends on the ocean stratification. 
Since Ertel's theorem does not depend on the specific type of Lagrangian invariant, 
modified formulas for potential vorticity can be applied. As an example, the work 
[3] introducing “optimal” potential vorticity can be pointed out. As a result, 
the approach used permits to quantify the degree of disequilibrium in atmospheric 
climate processes. 

Studies of the dynamics of currents in the atmosphere and ocean based on 
the potential vorticity analysis are few. Apparently, this is due to two factors. Firstly, 
potential vorticity according to Ertel is a kinematic quantity [4], from which it is 
impossible to determine intensity of the vortex structure of currents and even 
the rotation sign. Secondly, it is often sufficient to consider the potential vorticity in 
the quasi-genostrophic approximation according to Rossby [5] that is a dynamic 
characteristic [4] and contains the necessary information about the dynamics of 
currents.  

For the analysis of atmospheric forecasts, the work [6] plays an important role. 
It analyses the possibilities of using isentropic maps of potential vorticity to 
represent some dynamic processes in the atmosphere. Examples from operational 
weather analysis and from idealized theoretical models are given to illustrate this 
approach and its relationship to classical synoptic concepts. The structure, reasons 
for the formation and stability of cyclones and blocking anticyclones, physical 
mechanisms of Rossby wave propagation, baroclinic and barotropic instability in 
space and time are discussed. 

In [4], the concept of “potential vorticity” is analyzed and the basic relationships 
for calculations are considered, the approaches of Rossby and Ertel are studied. 
As an example, estimates are given from observational data of potential vorticity for 
the quasi-permanent anticyclonic Lofoten eddy in the Norwegian Sea. The authors 
showed that Ertel potential vorticity is a kinematic characteristic and Rossby 
potential vorticity in the quasi-geostrophic approximation is dynamic. 

Analysis of the Ertel potential vorticity equation permits to estimate 
the contribution of nonlinear and diffusion effects to the balance of forces that 
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determine PV evolution. This study is a continuation of the research [7]. It is aimed at 
obtaining a discrete equation for the potential vorticity of a stratified fluid in a quasi-
static approximation as a consequence of the initial finite-difference system of 
equations of the Black Sea dynamics model using the example of the Black Sea 
circulation with realistic atmospheric conditions for 2011 and to analyze the resulting 
potential vorticity equation. 

Equation of potential vorticity of a stratified incompressible fluid in 
the quasi-static approximation 

In the Boussinesq approximation and quasi-statics in the Cartesian coordinate 
system, the fluid motion in the domain Ω with boundary ∂Ω  in the Gromeka-Lamb 
form is described by the following system of equations: 

0
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The following designations are introduced: ( , ) ( , , )HU U w u v w= =
 

are 
the components of the current velocity vector along the axes (x, y, z) directed to 
the east, north and vertically downwards, respectively; ( , )u vF F F=



, g = (0, 0, g)
is free fall acceleration; (T, S, P and ρ)  are temperature, salinity, pressure and sea 
water density; ρ0 = 1 g/cm3 (here and henceforth it is pressure and density normalized 
to ρ0 ); f



= (0, 0, zf ) is the Coriolis parameter, where zf  = 2ω sin ϕ; ω is angular 
velocity of the Earth’s rotation; ϕ is latitude. 

In equation (1), taking into account the quasi-static approximation, the absolute 
velocity vortex and kinetic energy of motion are introduced: 
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where ver hor,µ µ are coefficients of vertical and horizontal exchange of momentum. 
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On the surface at z = 0 

, ,x y
V z V zu vν = −τ ν = −τ  ,tw = −ς ,T T

zT Qκ =  0
1

Pr ;S
z

EvS S−
κ =

ρ
        (7) 

at the bottom at z = H(x, y) 

u = v = w = 0, Tz = Sz = 0.           (8) 

The following designations are used: ( , )x yτ τ  is tangential wind stress; TQ
is heat flow; Ev is sea water evaporation; Pr is precipitation; S0 is model salinity on 
the sea surface; 1ρ  is sea water density on the sea surface. 

Functions , ,ver T Sµ κ κ  were calculated in accordance with the Mellor–Yamada 
parameterization [6]. 

On solid side walls for meridional boundary sections: 
,0)()(,0 2222 =∇==∇==∇==∇= xxxxxx SSTTvvuu           (9) 

for zonal boundary sections: 
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In boundary areas where water flows in, the following conditions are used: 
for meridional sections 
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for zonal sections 
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For the Upper Bosphorus Current and for the Kerch Strait, when the current is 
directed from the Black Sea to the Sea of Azov 
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When 0tt = , the following initial conditions are set: 
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Based on the system of equations (1)–(6), the Ertel equation is derived. 
Applying the corresponding operation from relations (1)–(2) and taking into account 
the continuity equation (3), the equation for ξ


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A consequence of equations (4), (5) is the equation for density 
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where the following designations are introduced 
4 4( ) , ( ) .T T H S S H

z z z zD T T D S S= κ − κ ∇ = κ − κ ∇    (17) 

The potential vorticity of an incompressible fluid in the quasi-static 
approximation has the following form:
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Then, from equations (15), (16), taking into account expressions (3), (17) and 
(18), the Ertel equation follows in the quasi-static approximation for a viscous fluid 
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Discrete potential vorticity equation 
in a quasi-static approximation 

In accordance with the difference operators introduced in [7], the following 
differential-difference equations of model (1)–(6) (differential in time) are written 
out: 
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In the quasi-static approximation, the components of the velocity vortex (Fig. 1) 
have the following form:
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1/2, 1/2, 1/2, 1/2, 1/2, 1/2 1/2 .z z
i j k x i j k y i j jv u f+ + + + + + +ξ = δ − δ +       (28) 

Representation (28) follows that at the vertices of the box ( , ,i j k ) (Fig. 1) 
an important relation is satisfied 
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We believe that the terms in square brackets on the left side of equations (21)–
(22) are written in a form that ensures conservation of enstrophy and energy [9] for 
the shallow water approximation and correspond to formulas (32) in [10]. 

Equations for the components of the absolute velocity vortex (analogous to 
the equation (15)) – for xξ  at the point , 1 / 2, 1 / 2i j k+ + , for yξ  at 

 and for zξ  at 1 / 2, 1 / 2,i j k+ +  – taking into account viscosity, 
follow from relations (21)–(24) and have the following form:
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F i g.  1. Distribution of variables in box (i, j, k). At the box vertices indicated by asterisks, PV (ω) is 
determined and on its edges – the components of absolute vortex velocity  
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The following designations are introduced: 
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The density equation at the point (i, j, k) is a consequence of relations (25)–(27) 
and is written as follows: 
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Carrying out similar [5] transformations with equations (29), (30), the equation 
of potential vorticity is obtained at the point  in the quasi-
static approximation 
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where the right side of equation (31) is a difference analog of expression (20). 
Taking into account the quasi-static approximation and equations (29), the following 
notations are adopted: 
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The difference analogue of the Ertel potential vorticity has the following form:

1/2, 1/2, 1/2 1/2, 1/2, 1/21/2, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2

x yyz xzx y
x i j k y i j ki j k i j k i j k+ + + + + ++ + + + + + + + +ϖ = ξ δ ρ + ξ δ ρ +

1/2, 1/2, 1/21/2, 1/2, 1/2 ,
z xyz x y z

z i j ki j k + + ++ + ++ξ δ ρ = ϖ +ϖ +ϖ    (32) 

where the designations , ,x y zϖ ϖ ϖ are obvious. 
The difference between equation (31) and equation (45) in [7] is not only that 

viscosity and diffusion are taken into account, but also that the components of 
the absolute velocity vortex have the form (28). 

Numerical analysis of components of the potential vorticity equation 
based on calculation results of circulation with atmospheric conditions 

for 2011. 
In numerical forecasting experiments, the following parameters were set. 

Calculations were carried out with a uniform step along horizontal coordinates of 
1.6 km; 27 horizons were used vertically with condensation in the upper sea layer. 
Accounting for the runoff of the Black Sea rivers and flows through the Bosporus 
and Kerch Straits (conditions (9)–(13)) corresponded to the data in [11]. The water 
temperature at the mouths of rivers (conditions (11)–(12)), except for the rivers of 
Turkey, was set from [11]. It was assumed that the temperature of the Turkish rivers 
is equal to the temperature of the coastal sea waters. In the Upper Bosphorus 
Current, the temperature and salinity were assumed to be the same as in the sea, in 
accordance with conditions (11). In the Lower Bosporus stream, the salinity was 
taken to be 35‰ with the temperature of 16 °С. 

SKIRON data for 2011 [12] were used to set the atmospheric effect in equations 
(7), (8); based on the Mellor–Yamada theory [8], vertical mixing was described. 
The initial conditions (14) in this calculation corresponded to 1 January 2011. 
The calculation was carried out for a year of model time, its parameters and results 
are described in detail in [13].  

As an example, the PV is considered (formula (32)) for two points in time – 
winter (Fig. 2, a) and summer (Fig. 2, b) periods, when the circulation structure is 
noticeably different. 

              а                   b 
F i g.  2. Specified sea level on 1 February (a) and 1 August (b) 2011 
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As of 1 January 2011, the specified sea level was an extensive cyclonic gyre with 
two synoptic eddies – the Sevastopol and the southwestern anticyclones. In contrast to 
the winter circulation, the cyclonic circulation splits into two in the summer season 
(Fig. 2, b). In the western part of the basin along the deep slope, the Black Sea Rim 
Current spreads in the form of a narrow jet current (Fig. 2, a). In winter, powerful 
meanders form along the northern periphery of the northwestern shelf and an intense 
anticyclone forms in the southeastern corner of the sea. 

Winter circulation corresponds to the potential vorticity shown in Fig. 3, a – d. 
There are qualitative differences in its structure in depth. In the upper 30-meter layer, 
large PV values are concentrated in two areas (Fig. 3, a, b). The first is 
the northwestern part of the sea, limited approximately by coordinates 44°–46°N, 
29°–31°E, where water dynamics is largely determined by the river runoff, primarily 
the Danube. Therefore, there are large spatial gradients in the density field, which 
determineϖ values in this sea area. The second area is a deep slope, where 
the Anatolian coast and the southern periphery of the northwestern shelf stand out 
(Fig. 3, b). 

F i g.  3. PV at horizons 3.75 (a), 35 (b), 106.25 (c) and 350 m (d) on 1 February 2011 

In the area of the Sevastopol and the southwestern vortex, no extreme values of 
ϖ are observed. The reason is that it is a scalar quantity equal to the product of 
density gradient and absolute velocity vortex and, therefore, its large value does not 
necessarily mean an increase in vorticity and, moreover, its sign does not determine 
the vortex rotation sign [2]. Below the upper 50-meter layer, the highest values of 
ϖ in the coastal strip are observed (Fig. 3, c, d). Local maxima are concentrated in 
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relatively small zones (∼ 10 km), which are clearly visible at a depth of 100 m 
(Fig. 3, c). In the central part of the sea, the PV structure is quite homogeneous in 
space. 

An illustration for the PV analysis is its calculation for summer period, when 
the circulation is less regular and its vortex structure is more pronounced 
(see Fig. 2, b). Two features appear in the structure of potential vorticity in August 
2011. The band of small values ϖ in the upper layer (Fig. 4, a, b) corresponds to 

the region of greatest mixing along the vertical density field, that is, the value 
xy

zδ ρ
is very small – two to three orders of magnitude less than vertical density gradients 
of the surrounding water. The second feature is a homogeneous structure and low 
PV values in areas approximately corresponding to the cores of the southeastern 
anticyclone, southwestern and eastern gyres. These features are also determined by 

the structure 
xy

zδ ρ , which varies slightly over space. This type of potential vorticity 
in central parts of gyres is consistent with the conclusions of the work [4], where 
the PV reconstructed from observational data in the Lofoten gyre area has a similar 
structure. On the lower horizons (Fig. 4, c, d) along the area boundary, there is 
a narrow band of heterogeneous values due to differences in the bottom topography; 
a small spatial variability of this value is observed in the central part. 

F i g.  4. PV at horizons 3.75 (a), 35 (b), 106.25 (c) and 350 m (d) on 1 August 2011 

The main contribution to the vortex structure, as a rule, is made by 
the component zϖ  [4]. Its magnitude is determined by the quasi-geostrophic nature 
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of the movement and the vertical stratification of sea water. In areas where there is 
an inflow of fresh (river mouths) or salt (straits) waters, horizontal components of 
potential vorticity may be of predominant importance. As an example, Fig. 5 shows 
the values at horizons of 3.75 and 106.25 m. 

Comparison of Fig. 5, a, c, e and 3, a shows that horizontal component zϖ
(Fig. 5, a) makes the main contribution in the zone of the Danube fresh water inflow 
in the northwestern part of the sea, in the rest of the area zϖ  determines vortex 
structure (Fig. 5, e). 

F i g.  5. PV components: xϖ  at horizons 3.75 (a) and 106.25 m (b); yϖ  at horizons 3.75 (c) and 106.25 

m (d); zϖ  at horizons 3 (e) and 106.25 m (f) on 1 February 2011 

At the horizon 106.25 m (Fig. 5, b, d, f), the vertical component is larger than 
xϖ  (Fig. 5, b) and yϖ  (Fig. 5, d), so it (Fig. 5, f) quite accurately determines potential 

vorticity type at the horizon 106.25 m (see Fig. 3, c). 



PHYSICAL OCEANOGRAPHY   VOL. 31   ISS. 3   (2024) 330 

Direct calculations establish that in the upper layer of the sea the form of 

the component zϖ  corresponds qualitatively to
xy

zδ ρ , but its absolute value is 

several orders of magnitude smaller than 
z

zξ . In turn, the absolute vortex structure 

is quite homogeneous and positive, therefore, when 
xy

zδ ρ is multiplied by 

the potential vorticity structure 
z

zξ , it characterizes 
xy

zδ ρ  and its quantitative value 

depends on 
z

zξ . The value zξ  is determined by two terms – relative and planetary 

vorticity. If we evaluate zf contribution to the absolute vortex, zf is comparable in 

magnitude to the relative vortex and increases the values of rξ . On average, the zξ

magnitude is two orders of magnitude larger than 
xy

zδ ρ . During this season, as 
a result of winter convection, the factor due to the vertical density gradient in 
the upper layer of the sea is small, with the exception of the river runoff area, where 
its value can be significant. 

At the horizon of 106.25 m (Fig. 5, f), both factors are positive and  
z

zξ , on 
average, is smaller by several orders of magnitude. PV variability is observed in 
the coastal area; PV is homogeneous in the central part of the sea. It should be noted 
that, firstly, at the lower horizons (approximately below 50 m depth) the relative 
vortex is in absolute value smaller than zf . Secondly, since the integral over 

the horizontal surface of rξ , whose difference from zero is determined by the river 

runoff and the water exchange through the straits, is small, then the rξ structure 
contains zones of cyclonic and anticyclonic rotation of waters. At the same time, 
planetary vorticity is positive and greater than rξ  and, therefore, it determines 
quantitative values of PV with corrections introduced by the relative vortex to 
the qualitative structure of potential vorticity at deep horizons. 

Let us consider the contribution of nonlinear forces to evolution of ϖ . 
The following designations are introduced: 

1 2 1 2( ) ( ) , ( ) ( ) ,
yz xzx x x x x x y y y y y y

x x y yC R C C C R C C= δ ϒ ρ + δ ξ = + = δ ϒ ρ + δ ξ = +

1 2( ) ( ) , .
xyz z z z z z S x y z

z zC R C C C C C C= δ ϒ ρ + δ ξ = + = + +  

The main contribution to the temporal evolution of PV is made by nonlinear 
forces in the upper layer in the coastal sea area (Fig. 6, a, b). Their contribution is 
different for various areas: it is greater in the northwestern part (Fig. 6, a) and along 
the Anatolian coast (Fig. 6, b). The estimates show that their quantitative differences 
in absolute value between the central part of the sea and its periphery are several 
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orders of magnitude. At the lower horizons (Fig. 6, c, d), the largest values of 
the nonlinear terms in Ertel’s equation are concentrated in the form of a narrow 
alongshore strip with a more pronounced character near the southern coast. 

Let us consider the contribution of individual terms , ,x y zC C C into SC . 

F i g.  6. SC  at horizons 3 (a) and 106.25 m (b) on 1 February 2011, and at horizons 3.75 (c) and 106.25 
m (d) on 1 August 2011  

In the upper layer (Fig. 7, a, c, e), areas of large absolute values , ,x y zC C C  
have a similar structure. In the southeastern corner of the basin and in 
the northeastern part of the sea, limited by coordinates 42°– 44°N, 37°–39°E etc., 
areas of , ,x y zC C C values close to zero are observed. The calculated average and 
maximum , ,x y zC C C values (Fig. 7, a, c, e) in comparison with SC  (Fig. 6, a) 
indicate that the extreme values differ by an order of magnitude, the average values – 
by two orders of magnitude. This means that , ,x y zC C C  are mutually compensated 
and the result is the structure shown in Fig. 6, a. The direct calculations establish that 
the main contribution to the nonlinear terms , ,x y zC C C  in the upper layer is made 

by 1 1 1, ,x y zC C C  accordingly, that is ( ), ( ), ( ).
yz xz xyx y z

x y zδ ϒ ρ δ ϒ ρ δ ϒ ρ The 

estimate of the order of magnitude shows that SC is on average two orders of 
magnitude less than each of the terms , ,x y zC C C . 
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F i g.  7. Components: at horizons 3.75 (a) and 106.25 m (b), at horizons 3.75 (c) and 106.25 m (d) and 
at horizons 3.75 (e) and 106.25 m (f) on 1 February 2011     

A similar situation occurs for the calculated fields as of 1 August 2011. 

Conclusion 
For a system of discrete equations of sea dynamics in the hydrostatic 

approximation and taking into account viscosity, diffusion, a finite-difference equation 
for the potential vorticity of a stratified incompressible fluid is obtained. Just as in 
the more general case, it has a divergent appearance and differs from its differential 
counterpart. Because a nonlinear state is used to calculate the density, the resulting 
discrete equation for PV is not an exact consequence of the finite-difference equations 
of the model. Additional research to estimate the influence of the nonlinear nature of 
the equation of state on the results obtained is needed. 

Analysis of the magnitude of potential vorticity itself confirmed previously 
obtained results that its vertical component is the main one. Horizontal components 
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make a noticeable contribution in river runoff areas, water exchange through straits 
and in zones of sharp density field gradients. The qualitative appearance of PV in 
the upper layer of the sea has similar features recorded from observational data. 
The homogeneous structure for the central part of the vortex formations and 
the intense nature in the area of large transverse gradients in the density field in 
the frontal zones determine potential vorticity structure. In the deep layers of the sea, 
its highest values are concentrated in the form of a narrow coastal strip; in the rest of 
the sea, PV values are small. 

Calculation of zϖ components in winter on the upper horizons showed that in 
the upper layers of the sea, except coastal zones of river runoff, zξ is determined, 

which is the sum of the relative vortex and zf  (value of approximately the same 
order). In the lower layers of the sea, the quantitative values of PV are determined to 
a greater extent by planetary vorticity and its qualitative features – by the relative 
vortex structure. 

From the analysis of nonlinear terms in the PV equation, it follows that in 
the upper layer of the sea the main contribution to the advection of potential vorticity 

SC is made in the northwestern part and along the Anatolian coast. At lower 
horizons, the highest SC values are observed along the coastal strip with a more 
pronounced character near the southern coast of the sea, which corresponds to 
the PV structure. 

The calculation of , ,x y zC C C terms for winter and summer periods enabled to 

establish two facts. Firstly, the magnitude of each , ,x y zC C C  is determined by

( ), ( ), ( ),
yz xz xyx y z

x y zδ ϒ ρ δ ϒ ρ δ ϒ ρ that is, by the divergence from the product 

of nonlinear terms in the equations of motion and density. Secondly, SC  is one and 
a half to two orders of magnitude less than each of , ,x y zC C C  components, that is, 
locally, the total sum of the vertical and horizontal advection of potential vorticity is 
two orders of magnitude less than each separately. A possible explanation for this 
result is as follows. Assume that the finite-difference analogues of the nonlinear 
terms in the PV equation are close to the differential form div( ).Uω



 Then, 

representing *,Sω= ω +ϖ where Sω is a quantity averaged over space, at each 

point of the domain we have div( ) div( ) 0S SU Uω = ω =
 

 or close to zero. Since 

the time variability of potential vorticity depends predominantly on *div( )Uω


, 
mutual compensation of nonlinear components along x, y, z occurs when calculating 
PV advection. 

The general nature of the results obtained is a matter for further research. 
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