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The article gives the analysis of tidal parameters in the Black Sea with the field data for a variety of 
marine coastal areas. The characteristics of the basic parameters of tidal oscillations in the region and 
the examples of cotidal maps and maps of the lines of equal amplitudes for the semi-diurnal tide are 
presented. Besides, the Black Sea water circulation is simulated using the block approach. The                 
σ-model of the ocean circulation developed in the Institute of Numerical Mathematics of RAS is 
applied. The model spatial resolution over the longitude and latitude is about 4 km. 40 irregularly 
distributed σ-levels are preset over the vertical; the step in time is 300 s. The vortex structure is 
distinctly manifested in the Black Sea circulation. The Rim Current which characterizes general 
cyclonic circulation along the Black Sea perimeter forming two evident vortices is reproduced. In 
general, results of numerical modeling in seemed like a good match observational data, as well as the 
results of other models of the Black Sea. To describe generation of tides, the module corresponding to 
the Sun and Moon tide-generating potentials is introduced into the σ-model. The analysis showed that 
the tides in the Black Sea are weakly expressed because of the relative smallness of the pool area. As 
the Black Sea straits are shallow and relatively narrow, so that does not contribute to the development 
of tides. 
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Introduction. Tidal height in the open ocean is an average of 1.2 m. The 
appearance of the tides is due to the attraction of the Moon (and to a lesser extent 
of the Sun), acting on the rotating Earth. The tide-force acts on the entire surface of 
the earth (including land). The tides on the coasts of oceans and seas are the most 
noticeable. 

The highest tides occur in North America in the Bay of Fundy and partly along 
the coast of Maine (USA). The maximum height of the tide measured here was 
18 m. The highest tide off the coast of the Russian Federation of 14 m height was 
registered in Penzhin Bay of the Sea of Okhotsk. 

Characteristics of the Black Sea tides are generally based on the mareographic 
measurement data analysis reflecting the level fluctuations at different points of the 
sea coast, particularly in the major ports such as Odessa, Sevastopol, Poti, 
Constance, Samsun, Trabzon and others. Analysis of these data showed that the 
amplitude of the tidal oscillations of the Black Sea surface is less than 17 cm: in the 
central parts of the western and eastern parts of the coast it is 9 cm, off the Crimean 
coast — 2 – 3 cm. Thus, the tides in the Black sea are relatively weak, and that’s 
the reason they are not studied enough. 
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Currently, the effective numerical models for calculation of the tides in barred 
and semi-bounded sea basins have been developed [1 – 3]. There the finite-
difference algorithms for rectangular and curvilinear nets with the field data 
assimilation are applied. These models are widely used in the calculation of tides in 
the complex geometry of the basins, in straits and other water bodies. 

 
Overall characteristics of the Black Sea tides. The Black Sea is an inland 

sea of the Atlantic Ocean. The Bosporus connects it to the Sea of Marmara, 
through the Dardanelles it is connected with the Aegean and Mediterranean Seas, 
and through the Kerch Strait – with the Azov Sea. The Mediterranean tides are 
attenuated in the straits. Periods of the Black Sea seiches and tides are different, so 
the resonant modes in the Black and Azov Seas are impossible [4 – 10]. 

The parameters of the Black Sea tides are set according to the mareographs 
that monitor the level fluctuations at different points of the Black Sea coast, 
particularly in the major ports [4]. The analysis showed that the tides in the Black 
Sea are mild because of the relative smallness of the basin area. The Black Sea 
straits are shallow and relatively narrow, that doesn’t contribute to the development 
of the tides. 

According to the measurements, the average period of the tides in the Black 
Sea is about half a day. As it has already been mentioned, the tides in the Black Sea 
are a relatively weak wave phenomenon, the amplitude of the Black Sea level tidal 
oscillations does not exceed 17 cm. The spatial structure of the semi-diurnal tide in 
the Black Sea is shown in Fig. 1. 

 

 
 

Fig. 1. Semi-diurnal tide in the Black Sea [11, 12]: а – cotidal map; b – map of isoamplitudes  
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The values of harmonic constants of the main tidal harmonics (the average 
amplitude H and the wave position angle γ) for the three Black Sea ports are given 
in the table [11, 13].  

 
The values of harmonic constants of the Black Sea tides  

(H – in cm, γ – in degrees) 
 

Port 

 

M2 S2 N2 K2 K1 P1 O1 

Neap tide 
average 

amplitude 
(cm) 

Syzygial tide 
average 

amplitude 
(cm) 22

11

SM

OK

HH
HH

+

+
 

Odessa 
H 3.5 1.9 0.5 0.8 0.9 0.6 0.4 

     10.8                  3.2                     0.24  
γ 142 148 136 155 79 109 112 

          

Sevas- 
topol 

H 0.4 0.3 0.1 0.1 0.3 0.4 0.1 1.4 0.2 0.57 γ 110 90 126 100 79 23 61 
            

Poti 
H 2.9 1.2 0.7 0.5 1.5 0.35 0.9 

8.2 3.4 0.58 
γ 293 299 280 297 299 291 277 

 
Ratio of the amplitudes of the diurnal and semi-diurnal harmonic components 

)/()(
2211 SMOK HHHH ++ permits to determine the nature of the tides. So, for 

Odessa, they are semidiurnal as )/()(
2211 SMOK HHHH ++ < 0.25, for Sevastopol 

and Poti 0.5 < )/()(
2211 SMOK HHHH ++ <1.5, and that is why the tides are mixed, 

irregular semidiurnal in these points [14]. In general, the average period of the 
Black Sea tides is 15 hours 25 minutes (Fig. 2) [15]. 

 

 
 
Fig. 2. The tide in the port of Constanta (March 5 – 7, 1962, full moon) [15] 
 

The modern methods of the mathematical forecast of circulation. Below 
we are to describe briefly the σ-model for thermohydrodynamics proposed by the 
Institute of Numerical Mathematics of RAS (INM) and applicable to describe both 
the tides and water circulation in the barred basins. In recent years this model has 
been further developed. In particular, it was used to calculate the circulation 
applying vortex capable [16] and large-eddy [17] approaches. 
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A flexible hierarchical model, describing the large-scale circulation in the 
Black Sea basin is applied for numerical calculations in the present article. The 
hierarchical structure of the model is based on the method of multicomponent 
splitting. It includes a splitting both under physical processes and geometric 
coordinates [18]. The program features a modular principle: every single step of 
splitting is represented by a separate software module. As a result of splitting a 
complex system of equations of the sea dynamics is divided into a number of 
modules with a simpler structure. 

Below we are to examine the principal equations of the sea dynamics within 
the framework of the approach proposed. The model refers to the class of sea 
environment σ-models. As the vertical coordinate the dimensionless variable 
σ ∈ [0, 1] is applied, preset in the case when the free surface of a fluid is taken in 
account by the following ratio  

 

)/()( ζζσ −−= Hz ,                                               (1) 
 

where z is the Cartesian vertical coordinate; H is the depth of the ocean in a 
quiescent state, intended by the limited function with bounded derivatives; ζ is the 
sea level displacement from the undisturbed position. 

Here is the statement of the problem of the ocean circulation simulation in the 
generalized coordinate frame. The transition from the Cartesian coordinate system 
to the generalized one is preset by the direct and inverse conversion differentials: 
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where X = (X1, X2, X3) – the Cartesian coordinates with an identity metrics matrix 
)1 ,1 ,1(diag)( =XG , and ),,( zyx=Y are the arbitrary generalized coordinates. At 

the same time at each space point it is possible to construct a system of local basis 
vectors ( )zух ∂∂∂∂∂∂= /,/,/)  ( XXXkj,i, , directed along the corresponding 

generalized coordinates. If )/()/( YXYX DDDD T  is a diagonal matrix, the system 
of local basis vectors (i, j, k) is orthogonal. Then the coordinate system Y = (x, y, z) 
is called orthogonal and the metrics matrix for it is of the following form  
 

 ),,(diag)/()/( 2
3

2
2

2
1

)()( rrrDDGDDG T == YXYX XY ,                     (3) 
 

and the metric coefficients ri can be calculated according to the following formula 
 









∂
∂

∂
∂

∂
∂

=
i

X
i

X
i

Xri
321 ,,   (i = x, y, z).                                          (4) 

 

The basis of mathematical ocean model is the system of primitive equations in 
the hydrostatic and Boussinesq approximations recorded in generalized orthogonal 
coordinates horizontally and σ-coordinate system vertically. The model equations 
are of the following form 



 

PHYSICAL OCEANOGRAPHY   NO. 1 (2016) 7 

,11)(
00

Fvu
Hx

g
x

pP
r
HvHluD a

x
x

t +
∂
∂

∂
∂

+







∂
∂

+
∂
∂

+−=+−
σ

ν
σ

ζ
ρρ

ξ               (5) 

 

,11)(
00

Fuv
Hy

g
y
pP

r
HuHlvD a

y
y

t −
∂
∂

∂
∂

+







∂
∂

+
∂
∂

+−=++
σ

ν
σ

ζ
ρρ

ξ               (6) 

 

ty
vHr

x
uHr

rr
xy

yx ∂
∂

=
∂
∂

+







∂

∂
+

∂

∂ ζ
σ
ω1 ,                                     (7) 

 

,
σ

θ
σ
θν

σ
θ θ

∂
∂

++
∂
∂

∂
∂

=
RD

H
Dt                                     (8) 

 

,DSS
H

SD S
t +

∂
∂

∂
∂

=
σ

ν
σ

                                            (9) 
 

).,0,0(ˆ),35,(ˆ 000
0 HgpS w σρρθρρ −+=                             (10) 

 
Here ap  – atmospheric pressure; ( )vu,=u  – horizontal velocity vector, u  and 

v  – its zonal and meridional projections; ω  – vertical velocity in σ-coordinate 
system, connected with the vertical velocity w in z-coordinate system by following 
ratio  
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θ  is the potential temperature; R  is the solar radiation penetrating flow; S is the 
salinity excluding the 35 ‰ constant; ρ is the deviation from the water density of 
mean density distribution depending only on the pressure of the liquid column 

gz0ρ  under the mean density in the ocean ρ0 = 1.025 г·см–3 at the depth z = σH; the 

Coriolis parameter φsin ~2Ω=l , where 




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86400
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1ξ  is the summand describing the additional 

momentum transfer in curvilinear coordinates; ν and νθ, νs are the coefficients of 
vertical turbulent viscosity and diffusion coefficients of vertical turbulent heat and 
salt, respectively, that in the case of a stably stratified vertical profile of potential 
density are calculated according to the Pacanowski-Philander or Monin-Obukhov 
parameterization, and in the case of the unstable stratified one – are considered 
larger for convection parameterization. The nonlinear equation of state 

),‰35,(ˆ wpS += θρρ to calculate the density of water, taking into account the 
compressibility due to the water column pressure is taken from [18]. 

The horizontal pressure gradient components xP  and yP in the equations (5) 
and (6) are calculated using a hydrostatic equation in a special form: 
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which can reduce errors in their difference approximations in σ-coordinate system. 
Since 0== yx PP , for the vertically linear density profile we have ρ = const×σH. 
Using the equation of state in the form of (10) also allows to reduce these errors 
because that part of the non-linear depth density profile, which does not contribute 
to the horizontal pressure gradient is subtracted in advance.  

Translation operator, being part of the total derivative of the velocity 
components in (5) and (6), is used in the semi-divergent symmetrized form:  
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where ϕ is the variable u  or the variable v .  
In the new model version the translation operator, being part of the total 

derivative of the scalar fields in the equations (8) and (9) is used in the divergent 
form:  
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where ϕ  is θ  or S , and if necessary, any other scalar fields.  

The lateral heat and salt diffusion operator D is selected equal for salt θ  and 
S  in (8) and (9) and is recorded in the universal form:  
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(14) 
where ϕ is either θ, or S, and ( )HyxK x σ,,  and ( )HyxK y σ,,  are the 2nd order 
horizontal diffusion coefficients with respect to x and y, chosen as some functions 
of the spatial coordinates. The variables κx and κy preset one combination or the 
combination of several functions with the lateral diffusion going along their 
isosufaces. These particularly may be σ-, Z- or ρ-surfaces.  
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The lateral viscosity operator F in the equations (5) and (6) is a combination of 
operators of the 2nd and 4th order:  

( ) ( )( ) ,graddivgraddiv
22/1 ϕϕϕ hhhh HHF BA −=                      (15) 

where ϕ is either u , or hgrad  and hdiv  – bivariate lateral gradient and divergence 
operators acting on the surfaces const=σ . The values A and B are the diagonal 
2nd order tensors:  
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where ( )yxAA xx ,= , ( )yxAA yy ,= , ( )yxBB xx ,= , ( )yxBB yy ,=  are the 
viscosity coefficients for the 2nd and 4th order operators along x  and y , preset like 
some of the functions of the spatial coordinates. The 4th order operator, as 
compared with the 2nd order operator suppresses high spatial harmonics more 
effectively and less distorts the basic large scale solution.  

 
Boundary conditions of the model. The momentum flux from the wind 

friction stress yx ττ ,  and universal condition for ω  are preset as the boundary 
conditions for the velocity at the ocean surface ( 0=σ ): 
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and for the temperature and salinity – normalized flows of the heat θq  and salt Sq : 
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The flow θq  is calculated taking in account the flow of sensible and latent 
heat, long wave and short-wave radiation and the flow caused by the presence of 
ice, and the flow Sq  – taking into account the balance of fresh water due to 
precipitation, evaporation, river flow and the formation or melting of ice.  

At the bottom ( 1=σ ) the impermeability conditions have quite a simple form 
in σ-coordinate system  

,0| 0==σω                                                   (19) 
and the condition of the quadratic bottom friction  
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where 3105.2 −⋅=DC  and 5=be  cm·s–1 are empirical constants.  
The impermeability and free gliding conditions are preset for the velocity on 

the lateral surface. On the solid areas of the lateral boundary and at the bottom the 
isolation conditions are specified for temperature and salinity. If the basin is not 
barred, temperature and salinity values taken from observations are preset at the 
liquid parts of the lateral boundary. 

In σ-ocean circulation model can be incorporated model of the sea ice 
dynamics – thermodynamics [19]. 
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Peculiarities of the INM RAS circulation σ-model numerical 
implementation. The main feature of this model, which distinguishes it from the 
known ocean models, is that under the numerical implementation it uses the 
splitting method [20] on the physical processes and spatial coordinates. 

For this purpose, the ocean thermohydrodynamics equations are written in a 
special symmetrized form. It allows the operator to introduce a differential problem 
in the form of a sum of simpler operators. Each operator is non-negative according 
to the norm defined by the law of conservation of total energy. This permits to split 
the complete problem operator into several operators of simpler problems [20] and 
to build the spatial approximation of the corresponding groups of summands (in 
different equations), so that the law of conservation of energy, carried out for the 
original differential problem, satisfies all split discrete tasks. Finite-difference 
approximations of the equations are based on the C grid.  

The splitting method can effectively realize the implicit time integration 
schemes for the transport-diffusion equations. The problem of geostrophic 
adjustment components of the Coriolis acceleration were implicitly approximated. 

 
Module structure of the model. Before the solution of the equations (5) – 

(10) in the model the following subsidiary calculations are performed. Their results 
are used in solving the basic system of equations. 

The initial atmospheric data are set in the normal geographic coordinate 
system with the spatial and temporal resolution, different from the model, so they 
are transferred to a model domain in the calculation model block by spatial and 
temporal interpolation. 

Calculation of sea ice characteristics is based on locally one-dimensional model of 
thermodynamics [19], the transport model [21] and the model of the ice dynamics [22]. 

Calculation of heat, salt and pulse flows to the ocean is carried out applying 
both model domain interpolated atmospheric data and calculated sea ice 
characteristics, as well as the ocean surface characteristics from the solution of the 
problem at this point in time, considered to be known.  

The splitting of the system of equations (5) – (9) is carried out at several 
hierarchical levels. At first the splitting into physical processes is performed. At 
higher levels, the splitting process comes to selection of the simplest space locally 
one-dimensional equations. At each time integration interval ],( 1+jj tt  the process 
described by the partly linearized system of equations (5) – (9), is represented as a 
superposition of the transport-diffusion process for θ, S, u, v and the process of 
adaptation of the velocity and density fields. In differential formulation these 
problems are described by the following equations (solution of the original 
problem at a point in time jt considered to be known): 
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The process of adaptation of the hydrological fields is described by a system of 
three equations: 
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The transport – diffusion process is implemented by splitting according to the 
physical processes: transport, lateral diffusion and vertical diffusion. To solve the 
time transport problem the Adams – Bashforth explicit method is applied. 
Divergent form of the transport operator provides the maintaining of heat and salt 
in the ocean in case when there are no flows in the boundaries. Time problem for 
the lateral diffusion is solved under the explicit difference scheme and the vertical 
– under the implicit one.  

To describe the transport – diffusion process the splitting according to the 
elementary transport – diffusion along the coordinates is applied. This operation is 
allowed by the semi-divergent form, possessing on the assumption of imper-
meability at the boundaries a property of skew-symmetry (non-negativeness) for 
each direction separately. 

The process of adaptation of the hydrological fields is achieved in two stages. 
At first, according to the values θ and S, obtained in the first stage, the density and 
further on the equation the pressure gradient components xP  and yP  are calculated 

(11). According to the calculated xP  and yP  the stipulated pulse change is 
computed:  
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The rest of the system is solved by separation into barotropic and baroclinic 
modes:  

.   ,   ,   ,
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This leads to the division of the equations into two systems of equations 
describing the adaptation of baroclinic and barotropic modes. 

The system of baroclinic adaptation equations has the following form  
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The implicit scheme with the methodology of the spatial operator diagonalization 
for the Coriolis members applying C grids is used in solution of this system. 
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The vertical velocity is obtained by depth integrating the continuity equations (7) 
according to the calculated horizontal components of the baroclinic velocity taking 
into the account the conditions of impermeability and free glide on the lateral 
boundaries: 

∫ 







∂
′∂

+
∂

′∂
=

σ

σω
1

1 d
y
Hrv

x
Hru

rr
xy

yx
. 

 

Boundary conditions for the vertical velocity on the surface and at the bottom 

are satisfied automatically because 0 
1

0

1

0
∫∫ =′=′ σσ dvdu .  

Implementation of the barotropic adaptation process requires a joint solution 
of three equations written applying an implicit time scheme:  
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This problem can be solved by both direct and iterative methods.  
 
Implementation of σ-model for the Black Sea circulation description. The 

considered σ-model version with the splitting procedure covers the Black Sea water 
area.  It allows registration of the Azov Sea. Estimated area is located from the 
27°26'60 " to 41°45'00"E and from 40°54'36" to 47°16'12"N with a spatial 
resolution (0°3') × (0°2'24") in longitude and latitude, respectively. The grid 
domain in the horizontal plane comprises 287×160 knots. Vertically there are 
preset 40 σ-levels unevenly distributed in the depth. The time step on the basis of 
the solution stability conditions is 300 s. 

Bottom bathymetry was obtained according to the data of Sevastopol branch of 
Zubov State Oceanographic Institute (ZSOI), which are represented in the form of 
separate topography maps of the Black Sea water area with a resolution of 
(0°0'36,00") × (0°0'36,00") in longitude and latitude and the ones of the Azov Sea 
with the spatial resolution, (0°0'35,06") × (0°0'35,06") respectively. Initial high-
resolution data are smoothed to eliminate local peculiarities, and then interpolated 
on the modeling domain. Further the model bathymetry on the grid with a 
resolution (0° 3') × (0°2'24") on the latitude and longitude was smoothed again to 
eliminate knees. The lateral boundaries of the domain are given in the form of a 
vertical wall with a minimum depth of 5 m. The topography smoothing and a non-
zero depth at all points in the domain, including onshore, are necessary for the 
ocean σ-model, as it uses the vertical coordinate transformation (1). The basin 
bathymetry is shown in Fig. 3. 
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Fig. 3. The Black Sea bathymetry (m)  
 

To set the initial conditions on the ocean surface, as well as for the 
construction of the initial data depth distributions, the materials provided by the 
Sevastopol branch of ZSOI were used. They contain data of monthly climatic 
temperature and salinity fields of the Black Sea. The initial temperature and 
salinity fields, as well as monthly ones on the surface of the Black Sea were 
calculated on the basis of the provided data. 

 
 

 
 

Рис. 4. Field of the Black Sea currents on the 10 m depth, calculated for October, 7, 2007 (arrows are 
shown for each of the third point of the computational grid)  

 
Since we are dealing with the general circulation ocean model, which uses a 

σ-coordinate system, there is a need for interpolation of 3-dimensional data 
fields. Transferring to the model, the data are moved to σ-levels. Note, that the 
σ-coordinates )/( Hz=σ is a coordinate system where the sea surface is taken 
as a zero depth, and the bottom (–H) corresponds to the maximum depth (at each 
point) with the coordinate value equal to one. Levels in such a coordinate system 
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do not coincide with the standard horizons, where the initial grid temperature and 
salinity data are usually located. Scaling to σ-levels is carried out as follows. At 
first, a two-dimensional interpolation is performed on the model grid by the 
algorithm described above. Then vertically a piecewise-linear data representation is 
used, which is followed by the calculation of the desired depths by means of a 
simple procedure of one-dimensional linear interpolation. 

 

 
Fig. 5. The average monthly Black and Azov Sea circulation at a depth of 5 m in June, July and 
August 2007 (arrows are shown for each of the third point of the computational grid) 
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Below see the examples of numerical experiments of the calculation of the 
Black and Azov Sea circulation. To verify the model, a series of numerical 
experiments was carried out for the period from 1 January 2007 to 31 December 
2008 applying various model parameters. As weather impact characteristics ERA-
Interim reanalysis data were used. 

It turned out that the results of calculations, especially the reproduction of the 
cold intermediate layer in the temperature field, essentially depends on the 
coefficients of viscosity and diffusion of both horizontal and vertical. After a series 
of experiments, the following parameters were selected: binding to the surface 
temperature of – 0.0; binding to the surface salinity – 2.0·10–3 cm·s–1; the 2nd order 
horizontal diffusion coefficient – 5.0·105 cm2·s–1; the 4th order lateral viscosity 
coefficient – 4 1.0·1017 cm4·s–1. 

The Pacanowski-Philander vertical parameterization was applied: the vertical 
diffusion coefficient for temperature – 0.5 – 0.0005 cm2·s–1; the vertical diffusion 
coefficient for salinity – 0.1 – 0.0001 cm2·s–1; the vertical viscosity coefficient – 
10.0 – 1.0 cm2·s–1. 

Fig. 4 demonstrates the field of the Black Sea currents on the 10 m depth, 
calculated for October, 7, 2007 by the method described above. The Black Sea Rim 
Current is well-marked. The Black Sea circulation vortex structure is understated 
due to the high 2nd order viscosity coefficient in this experiment (106 cm2·s–1). 

Fig. 5 shows the change in average monthly circulation at a depth of 5 m in 
June, July and August 2007. 

According to the results of calculations quite strong volatility level variations 
during the year can be traced, the Knipovich glasses are seen. Batumi anticyclone 
is not clearly reproduced, due to the rough set of the atmospheric forcing spatial 
distribution according to ERA-Interim reanalysis data 
 

Adding to the model the tide-generating potential block. In general, the current 
global tide models can be divided into three groups: the hydrodynamic, empirical and 
hydrodynamic with monitoring data assimilation (mareographs and satellite altimetry) 
[14, 23, 24]. Forecast of tides in the Black Sea applying the latter two types of models 
appears to be complicated due to the lack of continuous series of observations. Existing 
data is scattered, that does not allow performing the data interpolation between the 
calibration stations and obtaining a picture of tidal constituents. 

To describe the generation of the tides three main approaches are applied: in 
the equation to the tide-generating potential is added [25]; the special boundary 
condition simulating the entrance of tidal waves in the computational domain is 
preset in the open boundaries [26, 27]; two approaches are simultaneously applied 
[28 – 31]. The Black Sea is an inland sea of the Atlantic Ocean. The Bosporus 
connects it to the Sea of Marmara, through the Dardanelles it is connected with the 
Aegean and Mediterranean Seas, and through the Kerch Strait – with the Azov Sea. 
The Mediterranean tides are attenuated in the straits, so the tides in the Black Sea 
are formed only under the influence of tide-generating forces. For a description of 
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the tide generation we recommend to apply the approach that involves the addition 
to the initial system of primitive equations (5) – (9) in the hydrostatic and 
Boussinesq approximations recorded in horizontally generalized orthogonal 
coordinates and vertically in coordinate σ-system, the ΩM Moon tide-generating 
potential or/and ΩS Sun tide-generating potential, defined in the following way 
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where G – gravitation constant, MM and MS – masses of the Moon and Sun, re – 
radius of the Earth, lM and lS – distance from the center of the Earth to the Moon 
and the Sun centers, ZМ and ZS – zenith angles of the Sun and Moon. 

Zenith angle is expressed through the δ declination (of the Moon, the Sun), Φ 
latitude of the observer and α hour angle (the angular distance along the celestial 
equator from the observer's meridian to the meridian of a celestial body) according 
to the formula ФФZ sinsincoscoscoscos δαδ += . The hour angle is calculated 
as follows: Tt /360°+= λα , where λ – the longitude of the observer, T – the period 
a celestial body is returned within to the observer's meridian [25, 29, 32]. 

All of the aforementioned variables should be known at each estimated time 
point. Their values were obtained using a special functional US Naval Observatory 
[33, 34] and prepared in a form of an array as the initial data. 

Hence, the equations (5), (6) of described above the Black and Azov Sea joint 
circulation σ-model take the following form: 
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where ΩТ – gravitation potential of the Moon (ΩM) and the Sun (ΩS) or their sum 
(ΩM + ΩS). Unlike the initial equations, they are adapted to calculate the tides. 
 

Conclusion. Hence, the literature data on the tide fluctuations of 
hydrophysical fields in the Black Sea were generalized. The analysis of tide 
parameters in the Black Sea based on the field data for the various marine coastal 
areas. The characteristics of the basic parameters of tide oscillations in the region 
are presented, and the examples of cotidal map and isoamplitude semi-diurnal tide 
maps are given. 

The σ-model of the ocean circulation developed in the Institute of Numerical 
Mathematics of RAS was applied. The model spatial resolution over the longitude 
and latitude was about 4 km. 40 irregularly distributed σ-levels were preset over the 
vertical; the step in time to provide the solution stability was 300 s. 
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Analysis of the results showed that the vortex structure is distinctly manifested 
in the Black Sea circulation. The Rim Current which characterizes general cyclonic 
circulation along the Black Sea perimeter forming two evident vortices is 
reproduced. In general, the numerical modeling results showed a good match to the 
observation data, as well as the results of other models of the Black Sea. 

Analysis of existing models describing tide oscillations permit to select the 
most appropriate approach to the modeling of tides and associated currents in the 
Black Sea basin. To describe generation of tides, the module corresponding to the 
Sun and Moon tide-generating potentials is introduced into the σ-model. The 
necessary expressions to determine tide-generating potentials of the Moon and the 
Sun were obtained.  
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