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Based on the analytic solution of long wave equations, the features of seiches and seiche-like 
oscillations (combination of different seiche modes) in the model basin, which has the characteristic 
size of the Azov Sea, are considered. 
It was found that fluctuations of sea level forced by seiche-like oscillations are strongly different from 
the ones of the level due to seiche oscillations. Seiche-like fluctuations have a single level nodal line 
which changes its position in time, turning counter-clockwise. The maximum elevation level in the 
selected areas of the basin approached to the maximum possible value which is equal to the sum of 
the amplitudes of the interacting waves in the initial moment of time. The maximum value of the 
velocity modulus of the wave flows in all the cases was significantly less than the maximum possible 
value. 
At seiche oscillations the currents have a direction which is constant during the half-period and then it 
changes into the opposite one. Also the presence of counter and diverging flows is characteristic of 
seiches. In case of seiche-like oscillations the direction of wave currents always changes with time, 
velocity vectra are turning clockwise at that. Counter and diverging flows are absent. 
 

Keywords: seiches, seiche-like oscillations, free waves, long waves, currents, the Sea of Azov, 
analytic solution. 
 
DOI: 10.22449/1573-160X-2016-2-14-23 
 
© 2016, Yu.V. Maniliuk, L.V. Cherkesov 
© 2016, Physical Oceanography 
 

Introduction. Seiches are one of the most common phenomena in bounded 
basins and they make a significant contribution to the formation of hydrologic 
regimes in these basins [1, 2]. This is due to the fact that there is a great number of 
causes that induce seiches, and a small amount of energy is required to generate 
them [2, 3]. 

An initial change of liquid level, which transforms into the oscillations (they 
represent a superposition of several seiche modes) after the termination of 
perturbation effect, occurs as a result of exciting force effect. We are to call them 
seiche-like oscillations of liquid. 

In real basins theoretical investigation of seiches is hampered by their complex 
geometric shape and variable depth. Therefore it is impossible to find analytical 
solutions of hydrodynamic equations for these basins yet, but it is possible to solve 
this problem numerically using two approaches. In the first approach the perturbing 
force effect (after the termination of this force fluctuations of liquid in the basin are 
studied) on basin surface is modeled. Perturbations may have different forms: 
cyclone [4]; moving baric front [5]; wave-generator (which generates waves at 
resonant frequencies) at the liquid boundary of basin [6]; wind fields [7]. However, 
it is unknown from what the resultant oscillations are formed. It is assumed that 
this oscillation is a superposition of several seiche modes. Using the second 
approach, a problem on eigenvalues is solved numerically. A broad set of different 
methods is also used here. These methods are the following: finite difference 
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method [8]; finite element method [9]; RT-algorithm of conformal mapping. Thus, 
in [9] the problem solution on eigenvalues was found for the Sea of Azov by finite 
element method. As a result, the periods were calculated and the spatial structure of 
seiche modes was determined. 

Analytic solutions allow us to obtain a more complete picture of the 
phenomenon and investigate it in more detail. In [11 – 13] the formulas for 
calculation of seiche periods and free surface deviations for several basins with 
simple shape are given. From all the basins for which an analytic solution can be 
found, a rectangular basin with constant depth has a shape that is the most similar 
to the one of the Sea of Azov. 

The objective of this paper is to find such an analytic solution of seiche 
problem in linear approximation for rectangular basin of constant depth, which 
would allow us to calculate the periods of seiche oscillation modes, free surface 
deviations and the velocities of wave currents. Seiche and seiche-like oscillations 
are investigated on the basis of obtained solution. In [14] it is shown that the lowest 
modes of barotropic seiches can occur after the baric front passage over the Azov-
Black Sea basin. Therefore, we considered seiche-like oscillations which represent 
a superposition of the first two seiche modes. 

Formulation of the problem and obtaining of analytic solution. Let us 
consider free oscillations of homogeneous liquid in a closed basin. We assume that 
the waves are long and the atmospheric pressure above the basin waters is constant. 
In such a case, liquid motion is described by the following system of equations [15] 

xt gu ζ−= , yt gv ζ−= , yxt hvhu )()( −−=ζ ,                              (1) 
where yx,  are the Cartesian coordinates; vu,  are the projections of liquid motion 
velocity vector on the yx,  axes, respectively; ζ  is free surface deviation; h  is a 
depth of the basin; t  is time; g  is a free fall acceleration. 

At the rigid sidewalls of the basin an impermeability condition should be 
satisfied 

0=nV .                                                          (2) 
Here nV  is normal to the sidewall of the basin velocity component. 

We are to consider rectangular basin with a constant depth h . The length of the 
basin is a , the width is b . Taking this into account, boundary conditions (2) will 
take the following form: 

.0),(,0)0,(;0),(,0),0( ==== bxvxvyauyu                       (3) 
We will seek a solution of the system (1) in a form of time-periodic functions 

which satisfy the boundary conditions (3): 
txakyutyxu kmkmkm σπ sin)sin()(),,( 1−= , 
tybmxvtyxv kmkmkm σπ sin)sin()(),,( 1−= ,                             (4) 

tyxtyx kmkmkm σζζ cos),(),,( = , 
where kmσ  is a frequency of liquid oscillations, ,....,2,1,0;,...,2,1,0 == mk  

Now, having plugged in (4) into the system (1), we obtain 
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Integrating the equations (5) with respect to x  and (6) with respect to y , we have 
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π
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π
π
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We are to seek )(yukm  and )(xvkm  in the following form: 
)cos()( 1

0
−= ybmuyu kmkm π ,       ( ) )cos( 1

0
−= xakvxv kmkm π .               (9) 

Here kmu0 , kmv0 are the amplitudes of velocity components. 
Setting the right parts of equations (7), (8) equal to each other and replacing 

)(yukm  and )(xvkm  with the expression from (9), we are to find the relation 
between the amplitudes of velocity components: 

kmkm u
bk
amv 00 = .                                                 (10) 

Taking into account (4), (8), from the third equation of system (1) we will obtain:  
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Hence we find the expression for the calculation of seiche oscillation frequencies 
of liquid in the rectangular basin of constant depth: 
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With regard to (7), (9), formula (4) will take the following form: 

t
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π

σζ coscoscos),,( 0= .                   (13) 

The expression (13) may be written as follows: 

t
b

ym
a

xktyx kmkmkm σππζζ coscoscos),,( 0= ,                         (14) 

where km0ζ is an amplitude of free surface deviation. 
Formula (14) allows us to find a profile of liquid free surface for the specified 

values of kmmk 0,, ζ  and geometric parameters of the basin ba, . 
Using (13) and (14), we will obtain 
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With regard to (11), the relation (15) will take the following form: 
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Hence we have the formula for calculation of kmu0  values by the specified value km0ζ : 

222200
ambk

kb
h
gu kmkm

+
= ζ .                                     (17) 

Substituting the expression (17) to the (10), we will obtain a formula for 
calculation of kmv0  by the specified value km0ζ : 

222200
ambk
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h
gv kmkm

+
= ζ .                                  (18) 

We are to write down the formulas for calculation of wave velocity 
components applying (4), (9), (17) and (18): 
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Thus, the solution of equation system of long waves for the rectangular basin 
of constant depth was obtained. This solution allows us to find the periods of seche 
oscillation modes by the formula (12) as well as, specifying initial values of 
amplitudes of free surface deviations km0ζ , to calculate free surface deviations on 
the basis of the relationship (14) and wave velocities of corresponding modes 
applying the expressions (19), (20). 

Seiche oscillations. The analysis of the formulas (14), (19) and (20) allow us 
to devide seiches into three types. A type is determined by the values of mk,  
indices. The first type seiches have 0,0 =≠ mk , and their ζ,, vu don’t depend on 
y -coordinate. The second type seiches have 0,0 ≠= mk  and their ζ,, vu  don’t 

depend on x -coordinate. The third type seiches have 0,0 ≠≠ mk , and their 
ζ,, vu  depend both on x  and y  coordinates. 

The number of level nodal lines of each seiche mode is equal to the sum of 
indices mk + . The number of nodal lines parallel to y  axis is equal to k , and the 
number of nodal lines parallel to x  axis is equal to m . 

Now we are to consider the peculiarities of wave motions which take place for 
all the above mentioned types of seiches. The calculations were carried out for the 
rectangular basin with 450 km length, 250 km width and 10 m depth. The basin is 
an approximate model of the Sea of Azov with its characteristic dimensions. 

The values of seiche periods and maximum values of wave current velocity 
module, calculated according to the formula 22

kmkmkm vu +=V for the amplitude of 
free surface deviation (which is equal to 0.3 m), for the eight modes of seiche 
oscillations are represented in the table. 

As is clear from the table, the longest period (which is equal to 25.25 h) 
belongs to longitudinal uninodal seiche. The periods of other modes are 
signifigantly shorter: 14.03 h (uninodal transversal seiche), 12.63 h (binodal 
longitudinal seiche), 12.26 h (binodal longitudinal-transversal seiche). The periods 
of the third (12.63 h) and the fourth (12.26 h) seiches insignificantly differ from 
each other. This indicates that it is not always possible to identify seiche oscillation 
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modes by the duration of their periods unambiguously. Wave current maximum 
velocities of uninodal and binodal seiches of the first ( 0,0 =≠ mk ) and the second 
( 0,0 ≠= mk ) types are equal to 0.29 m/s. Wave current maximum velocities of 
the third type seiches ( 0,0 ≠≠ mk ) are always lower than the ones of the first and 
the second type seiches. From all the considered seiches of the third type, the 
highest wind current velocity, equal to 0.28 m/s, belongs to the seventh mode 
( 2,1 == mk ), and the lowest, equal to 0.22 m/s, belongs to the fifth mode 
( 1,2 == mk ). Wave current maximum velocities of seiches (( 1,1 == mk ) and 
( 2,2 == mk )) (they have an equal number of nodal lines which are transversal 
both to x  and y -axis) are equal to each other and make up 0.26 m/s. 

 
Seiche periods and maximum values of wave current velocity module  

 

Mode number Period, h k  m  max
kmV , m/s 

1 25.25 1 0 0.29 
2 14.03 0 1 0.29 
3 12.63 2 0 0.29 
4 12.26 1 1 0.26 
5   9.39 2 1 0.22 
6   7.01 0 2 0.29 
7   6.76 1 2 0.28 
8   6.30 2 2 0.26 

 
Now we are to consider a structure of level oscillations in more details. All 

level isolines of the first and the second type seiches are parallel. At the same time 
the isolines of the first type seiches are parallel to the y -axis, and the isolines of the 
second type seiches are parallel to the x -axis. Therefore, the areas with the 
maximum level deviations are situated in the vicinity of segments which are 
parallel to one of the coordinate axes. Two of these areas necessarily coincide with 
the side boundary of the basin. What for the third type seiches, only their nodal 
lines are parallel to coordinate axes. The rest of their isolines are curves which are 
situated in rectangles formed by intersecting nodal lines. The sizes of areas with the 
maximum level deviations are significantly smaller than the ones of the first and 
the second type seiches. For each of three considered types of seiches, in the 
vicinity of the corner points of the basin there are areas where level deviations are 
maximal. 

Seiche oscillations cause currents covering the entire volume of liquid in the 
basin. For the first type seiches the motion of liquid is parallel to x -axis, and for the 
second type seiches it is parallel to y -axis. The pattern for the third type seiches is 
more complex than for ones of the first and the second type. These motions take 
place at various angles to the coordinate axes. 

For the first and the second type seiches the areas of the highest current 
velocities are situated in a vicinity of nodal lines. For the third type seiches, velocity 
isoline (it has a value for each mode) divides the basin into the cells. The cells with 
minimum velocity and with the most intensive currents are selected. The location of 
intensive wave current zones essentially depends on the mode number. There are 
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cells with a constant velocity that is about 50% of the maximum velocity value. The 
cells, adjacent to the basin corners where the currents have the minimum intensity, 
are selected for each mode of seiches. 

For all three types of seiches occur both converging and diverging flows. 
Every half-period of corresponding mode wave current directions are reversed. 
Velocity module increases from zero to the maximum value during the first half-
period, and then it decreases down to zero during the next half-period. 

Seiche-like oscillations. We are to consider an interaction of two modes of 
seiche oscillations at the example of superposition 01ζ  and 10ζ . 

In Fig. 1, a the maximum values of level deviation 1001 ζζ +  over the time 
period 103τ  with t∆  step, where 10τ  is a period of the first mode of seiche 
oscillations, 20/10τ=∆t , are represented the for entire basin. At the same time level 
deviation amplitudes of interacting modes at the initial moment of time are equal to 
0.3 m. 
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Fig. 1. Time dependence of free surface deviation maximums and wave current velocity module: а –

1001 ζζ + , b – 1001 VV +  
 
With 0=t  the deviation of level reaches maximum and makes up 0.6 m. In 

the course of time the value of maximum decreases, reaches 0.24 m in t∆3  
(3.78 h), and then increases up to 0.39 m by t∆6  (7.56 h) time point. Afterwards, 
the value of maximum again decreases down to 0.38 m at tt ∆= 7  (8.82 h), and 
then increases up to 0.58 with tt ∆=10  (12.6 h). Analogous level oscillations take 
place in the next time periods ( ]1010 2, ττ  and ( ]1010 3,2 ττ . Thus, the maximum of 
level execute two oscillations during the time period equal to 10τ . This is affected 
by more short-period mode ( 55.0/ 1001 =ττ ). The calculations revealed the fact 
that during the interaction of two modes maximum amplitude of resultant wave can 
be nearly equal to the sum of the amplitudes of interacting modes. In this case 
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maximum amplitude of resultant wave reached 98% of possible maximum in the 
time point equal to t∆20  (25.2 h) and 88% of possible maximum in the time point 
equal to t∆40  (56.7 h). It should be also pointed out that in the calculating time 
interval the maximum of resultant wave amplitude exceeded 10 cm, except for the 
narrow time interval in the vicinity of t∆45 (56.7 h) time point where the 
maximum was equal to zero. The values of maximum level elevation and lowering 
are equal in modulus at that. 

Now we consider how the interaction of two modes affects liquid level 
oscillations in the basin. In Fig. 2 the isolines of resultant oscillation level 1001 ζζ +  
for different time points of interval, which is equal to 10τ , for the case when level 
deviation amplitudes of interacting modes make up m3.0100010 == ζζ at the 
initial time point are represented. At time point 0=t  (Fig. 2, a) 6.0max =ζ  m, at 

2/10τ=t  (Fig 2, b) 29.0max =ζ  m and at 10τ=t  (Fig. 2, c) 58.0max =ζ  m. 
As is evident from this figure, the resultant oscillation has only one nodal line 

which changes its position with time turning anticlockwise around the center of the 
basin. After a time period (which is equal to the period of longitudinal uninodal 
seiche 10τ ) the nodal line turns 90°. Maximum level deviations move in a similar 
way. In this case, minimum and maximum deviations are equal in modulus in each 
time point. 

The cases when 100010100010 , ζζζζ <>  were also considered. It is found that 
a difference of amplitudes has no effect on motion pattern. Only the initial position 
of this nodal line is changed. If 100010 ζζ >  , then it is shifted anticlockwise 
comparing with the position when 100010 ζζ = . If 100010 ζζ < , then it is shifted 
clockwise. 

Thus, the interaction of two seiche oscillation modes results in a formation of 
seiche-like oscillation which has one nodal line that turns anticlockwise with time 
around the center of the basin. 

Maximum values of wave current velocity modulus 1001 VV +  in time interval 
with 3 10τ  duration are represented in Fig 1, b. Level deviation amplitudes of the 
both modes are equal to 0.3 m at the initial time point. The calculation results 
demonstrated that the velocity modulus maximum value over the calculating period 
is 0.42 m/s. It makes 72% of sum of maximum velocity amplitudes of the both 
seiches and it is reached at 26 t∆  (32.76 h) and 48 t∆  (60.48 h) time points. A local 
maximum equal to 0.38 m/s (66% of maximum possible value) also occurs at 

tt ∆= 8  (10.08 h) time point. The maximum of velocity modulus makes two 
oscillations during 10τ  time period. The maximum of velocity modulus exceeds 
10 m/s at 0 – 3 10τ  time interval, except for a small segment in the vicinity of time 
point 0=t  where wave current velocity is equal to zero. Thus, the velocity 
modulus doesn’t exceed 72% of maximum possible value and becomes zero just 
once unlike 103τ  level deviation for the calculating period. 
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Fig. 2. Isolines of liquid resultant oscillation in the basin 1001 ζζ + : а – 0=t , b – 2/10τ=t , c – 

10τ=t  
 

In Fig. 3 the vector fields of wave current velocity 1001 VV +  for 103.0 τ=t  
and 105.0 τ=t  time points are represented. They illustrate the fact that an 
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interaction of two seiche modes results in formation of wave current system. It 
fundamentally differs from the wave currents that occur for single seiche modes. 
The direction of currents of the considered seiche-like oscillations constantly 
changes with time turning clockwise. Counter and divergent flows are absent at 
that. 
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Fig. 3. Vector fields of wave current velocity 1001 VV + : а – 103,0 τ=t , b – 105,0 τ=t  

 
Conclusions. 
1. The interaction of two seiche modes results in a formation of non-periodic 

seiche-like oscillation which has one nodal line that is turning in anticlockwise 
direction with time around the center of the basin. 

2. Maximum level elevations in separated parts of the basin waters may 
approach the maximum possible values which are equal to the sum of interacting 
wave amplitudes. 

3. The maximum value of wave current velocity modulus in all considered 
cases is under the maximum possible value and doesn’t exceed 72% of it. 

4. Wave currents for seiche-like oscillations are fundamentally different from 
the wave currents that occur for separated seiches. Under the seiche oscillations, 
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the direction of currents is constant during a half-period and then it reverses. The 
presence of counter and divergent flows is also characteristic of the seiches. In case 
of seiche-like oscillations, the direction of currents of the considered seiche-like 
oscillations constantly changes with time turning clockwise. Counter and divergent 
flows are absent. 
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