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Purpose. The aim is to study the mechanism of formation of a vertical fine structure due to the 

mass vertical transfer by the internal waves taking into account turbulent viscosity and diffusion as 

well as to investigate influence of the critical layers on the dispersion curves of internal waves. 

Methods and Results. In the Boussinesq approximation, the free inertia-gravity internal waves in 

a vertically inhomogeneous flow are considered with the regard for the horizontal turbulent 

viscosity and diffusion. The equation for the amplitude of vertical velocity of the internal waves 

contains a small parameter (in the dimensionless variables) proportional to the value of the 

horizontal turbulent viscosity. The solution of this equation is realized in a form of the asymptotic 

series of this parameter. In the zero approximation, the second-order homogeneous boundary value 

problem determined the vertical structure mode is solved numerically by the implicit third-order 

accuracy Adams scheme for real profiles of the Brent-Väisälä frequency and the current velocity. 

At the fixed wave frequency, the wave number is determined by the shooting method. In the first 

order with respect to the indicated parameter, the semi-homogeneous boundary value problem is 

also solved numerically according to the implicit Adams scheme of the third order of accuracy. A 

unique solution is found which is orthogonal to the solution of the corresponding homogeneous 

boundary value problem. The condition of this boundary value problem solvability yields the wave 

attenuation decrement. The dispersion curves of the first two modes are cut off in the low-

frequency region (the second mode is at a higher frequency), that is due to influence of the critical 

layers, where the wave frequency with the Doppler shift is inertial. It is shown that the mass 

vertical wave flux differs from zero and leads to correction (not oscillating on the wave time scale) 

of the average density, i. e. the internal wave generate fine structure that is of an irreversible 

character. 

Conclusions. When the horizontal turbulent viscosity and diffusion are taken into consideration, 

the mass vertical wave flux differs from zero and leads to generation of the vertical fine structure. 

The mass wave flux exceeds the turbulent one. The vertical scales of the generated vertical fine 

structure correspond to the actually observed ones. 
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The vertical fine structure of hydrophysical fields was discovered in 
the second half of the twentieth century after the creation and further 
improvement of high-resolution sounding equipment [1–4]. It was found out that 
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the temperature and salinity vertical profiles are very indented vertically (without 
density inversions) and constitute a “layer cake” 1. The cause for this layering 
was not clear.  

According to one concept, small-scale turbulence is generated due to Kelvin-

Helmholtz local hydrodynamic instability and breaking of internal waves [5–16]. 

According to other concepts, the double diffusion mechanism leads to 

the formation of stepped structures in the ocean [17, 18]. The role of intrusive 

separation in the areas of fronts and synoptic eddies [19–21] should be noted. 

Hydrodynamic instability and intrusion separation often work together, creating 

a small-scale layering – a microstructure in the ocean [3]. The wave mechanism for 

generating a vertical fine structure due to nonlinear effects during the propagation 

of internal wave trains (without breaking) also merits attention. Its essence is that 

during the propagation of weakly nonlinear internal wave train, the scale-average 

current waves and non-oscillating correction to the density are generated. This 

correction is interpreted as a wave-generated fine structure [22, 23]. The mentioned 

correction to the density is proportional to the square of wave amplitude, and after 

the wave train passage the unperturbed stratification profile regains. Thus, the fine 

structure generated by the wave train is reversible. 

With regard to turbulent viscosity and diffusion, the internal waves attenuate 

[24, 25]. The vertical wave fluxes of heat, salt and momentum are nonzero [26, 

27]. Below it will be shown that the wave flux of mass ρw  (ρ,w  are wave 

perturbations of density and vertical velocity, respectively) is nonzero and leads to 

average density profile deformation – to a fine structure that is generated by 

the wave and has an irreversible character. Since the coefficients of horizontal 

turbulent viscosity and diffusion are three to four orders of magnitude greater than 

the corresponding coefficients of vertical turbulent viscosity and diffusion, 

the latter are neglected. 

 

Statement of the problem. Free internal waves in a basin of constant depth 

are considered taking into account the Earth rotation in the presence of an average 

plane-parallel current with a vertical velocity shift. The coefficients of horizontal 

turbulent viscosity and diffusion are assumed to be constant. The amplitude of 

the vertical velocity, dispersion relation and wave attenuation decrement are found 

in the linear approximation. In the second order of the wave amplitude the wave 

flux of mass and non-oscillating on the wave scale density correction are 

determined. This density correction is a wave-generated fine structure. 

We introduce dimensionless variables [27] (a prime symbol marks the dimensional 

physical quantities): 
 

' ' ' '

*

' ' ' '

* * * 0 * 0

, , , / ω ,

ω , ω , ω , ω ,

x Hx y Hy z Hz t t

u H u v H v w H w U H U

   

     

 
 

 
1  Panteleev, N.A., Okhotnikov, I.N. and Slepyshev, A.A., 1993. Small-Scale Structure and Dynamics of 

the Ocean. Kiev: Naukova Dumka, 193 p. (in Russian); Fedorov, K.N., 1976. Fine Thermohaline Structure of 
Oceanic Waters. Leningrad: Gidrometeoizdat, 184 p. (in Russian). 
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' ' 2 ' ' 2

0 * 0 0 * 0

' ' 2 2 ' ' '

0 * *

ρ ρ (0) ω ρ / , ρ ( ) ρ (0) ω ρ ( ) / ,

ρ (0) ω , μ, μ, ω ,

H g z H z g

P H P K K M M f f

 

   
 

 

where x, y, z are two horizontal and a vertical coordinate, z axis is directed 

upwards; *ω  is a characteristic wave frequency; u, v, w are two horizontal and 

a vertical component of wave current velocity, respectively; ρ  and P are wave 

perturbations of density and pressure; 0ρ  is non-perturbed mean water density; 

H is a sea depth; K, M are coefficients of horizontal turbulent viscosity and 

diffusion; μ is a characteristic value of horizontal turbulent viscosity; 0 ( )U z  mean 

flow velocity; f  is the Coriolis parameter.  

A system of hydrodynamics equations for wave perturbations in 

the Boussinesq approximation has the following form: 

 

0 ε ,h

dUDu P
fv w K u

Dt dz x


     


                                      (1) 

 
 

ε ,h

Dv P
fu K v

Dt y


    


                                              (2) 

 
 

ε ρ,h

Dw P
K w

Dt z


    


                                            (3) 

 
 

0ρρ
ε ρ,h

dD
w M

Dt z
   


                                             (4) 

 
 

0.
u v w

x y z

  
  

  
                                              (5) 

 
 

Here 2ε μ / ω H is a small parameter proportional to the horizontal turbulent 

viscosity value; h is horizontal Laplace operator, 
2 2

2 2h
x y

 
  

 
; the action of 

/D Dt  operator is revealed by the formula 

 

0( ) .
D

u U v w
Dt t x y z

   
    
   
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Boundary conditions at the sea surface ( 0z  ) are a rigid lid condition that 

filters internal waves from the surface ones 2 and the absence of tangential stresses [25]: 
 

(0) 0,w   
 

0,
w

K
x





       0,

w
K

y





     0.z                                          (6) 

 

Boundary conditions at the bottom are the impermeability condition and 

the absence of tangential stresses (smooth slip condition [25]): 
 

0, 0,
w

w K
x


 


  0,

w
K

y





    1.z                                           (7) 

The tangential stresses at the bottom are zero, since the vertical exchange 

coefficients are neglected. 

 

Linear approximation. The solutions of linear approximations we seek in 

the form 
 

1 10 ( ) exp( θ) . .,u u z A i c c   
1 10 ( ) exp( θ) . .,v v z A i c c   1 10 ( ) exp( θ) . .,w w z A i c c   

1 10 ( ) exp( θ) . .,P P z A i c c     1 10ρ ρ ( ) exp( θ) . .,z A i c c                          (8) 
 

where c. c. are complex conjugate terms; A is the an amplitude factor; θ  is a wave 

phase; θ / , θ / ωx k t       , k is a horizontal wave number, ω  is a wave 

frequency. It is assumed that the wave propagates along x axis. 

After substituting (8) into system (1)–(5), the relationship of the amplitude 

functions follows 10 10 10 10, , ρ ,u v P with 10w : 

 

10
10 ,

dwi
u

k dz
      0ω ,k U                                                    (9) 

 

 

 

2

10 0 10 10
10 10 2

ε ,
ε

dw dU dw dwi if
P w i kK

k k dz dz dz dzk i k K

 
    

   

 

 

10 0
10 2

ρ
ρ ,

ε

w d

i k M dz


 
                  

 
10

10 2
.

ε

dwif
v

dzk i k K



                  (10) 

 

Function 10w  satisfies the equation 
 

 

2
2 2 2 2 2 4 2 210 0 10

2

2 2 2
2

3 2 20
102 2

( ε ) 2 ε ε

( ε )
ε ε 0,

( ε )

d w dU dw
i k K i k K f k K kf

dz dz dz

d U i k K
k k i k K i k K kN w

dz i k M

          

    
       

   

        (11) 

 
 

2 Miropolsky, Yu.Z., 1981. Dynamics of Internal Gravitational Waves in the Ocean. Leningrad: 

Gidrometeoizdat, p. 30. (in Russian). 
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where 2

0ρ /N d dz   is a square of Brunt – Väisälä frequency. 

Boundary conditions for 10w :  
 

at 0, 1z                             

           10 0.w                                                                     (12) 
 

Boundary conditions (6), (7) are satisfied automatically. Equation (11) has 

a small parameter ε . Following the method described in [28], the solution 10w  and 

frequency ω  are represented in the form of asymptotic series by ε  parameter: 
 

10 0 1( ,ε) ( ) ε ( ) ... ,w z w z w z                                     (13) 
 

0 1ω ω εω ... .                                             (14) 

 

After substituting expansions (13), (14) into (11), (12) we obtain the boundary-

value problem for 0w  in the zero approximation by ε : 
 

 
2 22

2 20 0 0 0 0
0 0 02 2 2 2 2 2

0 0 0

0,
( ) ( )

d w dU dw d U kwkf
Lw k N

dz f dz dz dz f

 
       

     
 (15) 

 

where L is linear differential operator; 0 0 0ω k U     is a wave frequency with 

Doppler shift. 

Boundary conditions for 0w are as follows: 

 

0 (0) 0,w          0 ( 1) 0.w                                                      (16) 

 

The boundary-value problem (15), (16) in the absence of a flow at 0 0U   has 

a countable set of eigenfunctions – a set of modes. Moreover, for each value of 

the wave number corresponds a certain frequency value 0ω , satisfying 

the inequality 0ω max( )f N  and corresponding to the given mode. At 0 0U   

a discrete spectrum of real eigenfrequencies may not exist [29]. This is due to 

the singularities in equation (15), when 0 0  and 0 f    (hydrodynamically 

stable flows are considered). In the presence of 0 0  singularity, there is a critical 

layer where the phase velocity of the wave is equal to the flow velocity [30, 31]. 

When Earth’s rotation is taken into account, the mentioned singularity shifts to 

the level where 0 f   [32]. The effect of this singularity on the dispersion curves 

is illustrated by the calculations below. 

We introduce the notation:                         
2

0

2 2

0 0

( ) ,
( )

dUf k
a z

f dz
 

  
 

2
2 2 0

0 02 2 2

0

( ) ( )
( )

d Uk
b z k N

f dz

 
   

   
. 

Then equation (15) can be written as 
2

0 0
02

( ) ( ) 0.
d w dw

a z b z w
dz dz

                                               (17) 
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Equation (17) is reduced to a self-adjoint form by multiplying both sides of 

the equation by ( ) exp( ( ) )p z a z dz  function: 

 

0
0 0( ) ( ) 0,s

dwd
L w p z q z w

dz dz

 
   

 
                                            (18)  

 

where ( ) ( ) ( )q z b z p z  ; sL  is a self-adjoint differential operator. 

The following approximation 1w  in the expansion (13) with respect to 

the parameter ε  satisfies the equation 
 

1 1( ),Lw F z                                                       (19) 

 

     

 

2 2
2 2 2 2 20 0

1 1 0 0 0 02 2

2
2 0

0 1 0 02 2 2

0 0

( ) ω 3 2 2 3

1
ω , ,

( )

d U d w
F z G ik K k k N w f

dz dz

d U
k ik M k w G

dz f

   
            

   

  
      

    

 

 

where G  is an auxiliary function. 

The left side of equation (19) is reduced to a self-adjoint form by multiplying 

both parts of equation (19) by function ( )p z : 
 

1 1( ),sL w z                                              (20) 
 

where 1 1( ) ( ) ( ).z p z F z   

Boundary conditions for function 1w :  

 

1(0) 0,w             1( 1) 0.w                                        (21) 

 

The solvability condition for the boundary value problem 3 (20), (21):  

 
0

1 0

1

0.w dz


                                                   (22) 

 

From here we find the expression for 1ω : 

 

1ω ,
c

i
d

                                                      (23) 

 

 

 
3 Kamke, E., 1959. Differentialgleichungen: Lösungsmethoden und Lösungen. Leipzig: Geest & 

Portig K.-G. (in German). 
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   
2 2

2 2 2 20 0
0 0 0 02 20

2

0
2

1 0
0 02

3 2 2 3

,

d w d U
K f kw N k

dz dz
c k pw Gdz

d U
kM k

dz



   
          

    
  

  
     

  

  

 
0 2 2

2 2 2 20 0
0 0 0 0 02 2

1

3 4 3 2 .
d w d U

d f kw k kN pw Gdz
dz dz



  
         

  
  

Wave mass transport. The vertical wave flux of mass is determined by 

the formula 
 

2

10 10 1 0

2

ρ
ρ . .

ε

w w A d
w c c

i k M dz



 
 

,                                      (24) 

 

where 1 exp(δω ),A A t   1δω ω / i  is a wave attenuation decrement, 1ω  is purely 

imaginary value; the bar above means averaging over the wave period. The vertical 

wave flux of mass leads to irreversible deformation of the density field, which can 

be considered as a wave-generated vertical fine structure. The equation for non-

oscillating at the wave time scale correction to the mean density ρ  has 

the following form: 
 
 

0 0

ρ ρ ρ ρ ρ ρ
0.

u v w
U V

t x y x y z

     
     

     
 

 

In the horizontally homogeneous case this equation is transformed to 
 

ρ ρ
0.

w

t z

 
 

 
                                                   (25) 

 

We integrate equation (25) over the time: 
 

0

ρ
ρ .

t
w

dt
z

 
    

 
                                            (26) 

 

Substituting vertical wave flux of mass ρw  (24) into integral (26), after 

integration we obtain 
 

 
0

2δω1 ρ
ρ 1 e

2δω

tw

z


   


,                                      (27) 
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where 

2
0 10 10 0

2

ρ
ρ . .

ε

w w A d
w c c

i k M dz



 
 

, 1A A  at 0t  . 

 

In expression (27), turning to the limit at t   with regard to the fact that 

δω 0 , we find ρ : 
0

ρ 1
ρ .

2δω

w

z


  


                                           (28) 

 

The value ρ , that depends on the vertical coordinate, is non-oscillating at 

the wave time scale correction to the average density – vertical fine structure 

generated by the wave. In [22, 23], a non-oscillating correction to the density, 

proportional to the square of the wave amplitude, was determined. After the wave 

train passage, the unperturbed stratification profile is restored and the fine structure 

is reversible. Correction (28) is proportional to the square of the maximum wave 

amplitude and is a wave-generated irreversible fine structure. 

 

Calculation results. We will calculate the vertical fine structure generated by 

the internal wave for 14-minute internal waves of the lowest mode observed at 

the entrance to the Strait of Gibraltar from the Mediterranean Sea [33]. 

The amplitude of these waves was 16 m. The vertical profiles of the Brunt – 

Väisälä frequency and the flow velocity are shown in Fig. 1. 

 

 

 

 

F i g.  1. Vertical profiles of: the Brunt – Väisälä frequency (a); the current velocity (b) 
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The boundary value problem (16), (18) is solved numerically by the implicit 

third-order Adams scheme of accuracy. The dispersion curves of the first two 

modes are shown in Fig. 2, a, with no regard to the flow – in Fig. 2, b. In the low-

frequency region, in the vicinity of the inertial frequency, a significant difference in 

the behavior of the dispersion curves is observed. When the flow is taken into 

account, the dispersion curves are cut off in the low-frequency region (Fig. 2, a) 

due to the effect of critical layers, where the wave frequency with the Doppler shift 

is equal to inertial one. The minimum frequency for the first mode is 
41,326 10 rad/s, for the second mode – 

44,363 10 rad/s. For comparison, we 

indicate that the inertial frequency is equal to 58,582 10 rad/s. In the absence of 

a flow (Fig. 2, b), no cutoff occurs in the low-frequency region and the dispersion 

curves at small wave numbers smoothly approach the inertial frequency. The wave 

number of 14-minute internal waves of the first mode is 3.76 · 10-3 rad/m. We find 

the normalizing factor 1A  by the known value of the maximum amplitude of 

vertical displacements. In order to express the vertical displacement ζ  we use 

the relation  ζ /d dt w : 

0
1 0

0

ζ exp( ω ) . .
iw

A ikx i t c c  


 

 

This implies   

1

0 0

maxζ
.

2max /
A

w



                                              (29) 

 

 
 
 

 

F i g.  2. Dispersion curves of the first two modes of internal waves: a – at presence of the current; b – 

when the current is absent (the first mode – solid line, the second one – hatch line)  
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A typical value of turbulent diffusion coefficient M at the considered scales 4 is 

1 m2/s. Semi-homogeneous boundary value problem (20), (21) is solved 

numerically according to the implicit Adams scheme of the third order of  accuracy 

at К = 2М. A unique solution that is orthogonal to the nontrivial solution 0w of 

the corresponding homogeneous boundary value problem (15), (16) is found. 

The correction to the frequency 1ω  is found from the solvability condition (22) of 

this boundary value problem and is determined by formula (23). The value 1ω  is 

purely imaginary, therefore 1δω ω / i  is a decrement of wave attenuation. In 

Fig. 3, a the dependence of the wave attenuation decrement on frequency is shown. 

The decrement modulo of the second mode is larger than the one of the first mode. 

Features of the decrement behavior in the low-frequency region are shown in 

Fig. 3, b. The decrement reduction in the vicinity of the inertial frequency due to 

the effect of critical layers, where the frequency of the wave with the Doppler shift 

is inertial, attracts attention. In the absence of a current, the wave attenuation 

decrement modulo is at least an order of magnitude larger (Fig. 3, c). No cutoff 

occurs in the low-frequency region (Fig. 3, d). 

Vertical wave fluxes of mass (24) for 14-minute internal waves of the first 

mode both in the presence of a current and in its absence are shown in Fig. 4. 

In the presence of a current, the wave flux of mass is smaller. In Fig. 5 the wave 

(in the presence of a current) and turbulent vertical mass fluxes are compared. 

The turbulent flux of mass is determined by the formula 0ρρ z

d
w M

dz
    , 

the coefficient of vertical turbulent exchange is estimated by the formula 
4 10,93 10z cM N  

 
m2/s, cN  corresponds to the Brent – Väisäl frequency in cph 

[34]. 

The wave flux of the mass exceeds in modulus the turbulent one. The vertical 

profile of mean density 0ρ is represented in Fig. 6, a. A non-oscillating at the wave 

time scale correction to density ρ  (28) both in the presence of a current and in its 

absence, is shown in Fig. 6, b. In Fig. 6, c, the same dependences are presented in 

the pycnocline. A non-oscillating at the wave time scale correction to density in 

the upper 40-meter layer is larger in magnitude in the presence of a current. 

Inversions in the vertical density distribution do not occur. The characteristic scale 

of vertical fine structure (10–20 m) generated by the wave corresponds to the 

actually observed one. 

 

 

 

 
4 Bowden, K., 1983. Physical Oceanography of Coastal Waters. Somerset, New Jersey: Wiley, 

1983). 
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F i g.  3. Dependence of the attenuation decrement on the wave frequency (a); the same – in the low-

frequency area (b); the same dependencies – when the current is absent (c, d) 
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F i g.  4. Profiles of the mass vertical wave flux 

at presence of the current (solid line) and when 

the current is absent (dotted line) 

F i g.  5. Profiles of the wave (solid line) and 

turbulent (hatch line) vertical flux of the mass 

 

 

  

 

 

 

 

F i g.  6. Vertical profiles: a – of average density; 

b – of not oscillating correction of density at 

presence of the current (solid line) and when the 

current is absent (dotted line); c – the same – in 

the upper 200 m layer 
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Conclusions 

1. The vertical wave flux of mass with regard to horizontal turbulent viscosity 

and diffusion is nonzero and exceeds the turbulent one in absolute value. 

2. The indicated vertical wave flux of mass leads to non-oscillating on 

the wave time scale correction to the density – the wave-generated fine structure. 

This fine structure is irreversible. 

3. Dispersion curves of internal waves are cut off in the low-frequency area, 

which is caused by the effect of critical layers where the wave frequency with 

the Doppler shift is equal to inertial one. 
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