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Purpose. This paper briefly reviews the theory of singular vortices (SV) on a beta-plane.  
Methods and Results: The primary focus of the paper is on a long-term evolution of an individual SV: 
the governing equations and integrals of motion are given, the algorithm of numerical implementation 
of these equations for investigation of such an evolution is described, and the results of some 
numerical experiments are presented. It is shown that the vortex evolution consists of two stages. 
At an initial (quasi-linear) stage, the near-field radiation of Rossby waves by the vortex produces, 
near the vortex, a non-stationary secondary dipole – the beta-gyres – which forces the vortex to move 
(a cyclone drifts northwestward, an anticyclone – southwestward). At the next (nonlinear) stage, 
the far-field radiation of Rossby waves and self-interactions within the regular component of 
the motion become of importance. A singular cyclone (anticyclone) migrates slowly into 
the anticyclonic (cyclonic) beta-gyre; the SV and the beta-gyre form a compact vortex pair which 
continues to move northwestward (southwestward). As this process takes place, the cyclonic 
(anticyclonic) beta-gyre gradually drifts away from and ceases to affect the SV, while the SV starts to 
interact with the Rossby waves it radiated previously, which results in oscillations of its translation 
speed. The duration of the quasi-linear stage rapidly increases with an increasing intensity of the SV; 
for vortices of small or moderate intensity, this stage ends rapidly and gives way to the nonlinear 
stage. The first phenomenological description of the nonlinear stage of a singular monopole’s 
evolution appeared in our recent work on the dynamics of the SV on a beta-plane.  
Conclusions: The theory of singular vortices on a beta-plane developed here significantly broadens 
our understanding of the evolution and dynamics of localized geophysical vortices which play 
an important role in the large-scale circulation of the ocean and atmosphere. 
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1. Introduction
Discovery of oceanic synoptic vortices (see, e.g. [1] and references therein) 

provided a powerful impetus to the development of experimental and theoretical 
studies of vortex motion in a rotating fluid. Oceanic and atmospheric synoptic 
vortices possess an important ability to "self-propagate" relative to the rotating 
spherical Earth. For example, on a nonrotating sphere or on an f-plane with no 
mean currents, any radially symmetric vortex (hereafter, “monopole”) remains 
unchanged and motionless; however, taking into account the β-effect, it begins to 
move along a certain trajectory, emitting Rossby waves. Mechanisms of this 
evolution have been studied by many authors analytically (see, e.g. [2–5]), 
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numerically (see, e.g. [6–10]) and in laboratory experiments (see, e.g. [11, 12]). 
It was found that at an initial stage of the motion development, secondary dipolar 
vortices, the so-called beta-gyres, are generated near the vortex. This dipole 
"pushes" the vortex along its axis and, in turn, rotates as a whole in the direction 
determined by the vortex polarity. As a result (in the Northern Hemisphere), 
a cyclonic (anticyclonic) vortex moves to the northwest (southwest). However, it 
remained unclear whether the beta-gyres mechanism works until the vortex 
dissipates or other effects come into play with time, and if so, which ones and how 
they depend on the vortex parameters. These and some other questions are 
considered in the present paper, which is a short survey of the main results of 
the theory of singular vortices on a beta-plane, proposed in [2]. 

The work is organized as follows. In Section 2 the basic equations of the theory 
are presented, a brief discussion of the general properties of a system of singular 
vortices (SV) is given and equations and conservation integrals for an isolated SV are 
derived. In Section 3 the initial motion of an isolated SV and the development of 
beta-gyres are analyzed. Section 4 is devoted to the description of a numerical 
algorithm for computing the evolution of the systems of singular vortices. Section 5 
presents recent results of numerical experiments on the long-time behavior of 
an isolated SV. A brief discussion of all these results is given in Section 6. 

 
2. Singular vortices. Problem statement 

Basic equations. The vortex dynamics will be studied within the framework of 
a 1.5-layer quasigeostrophic (QG) model on a beta-plane, described by the well-
known conservation equation for the QG potential vorticity (see, e.g., [1]) : 

 

ψ̂ψ̂ˆ   ,0)βˆ,ψ̂()βˆ( 22 ayJyt −∇=Ω=+Ω++Ω∂ ,                            (1) 
 

where ),,(ψ̂ψ̂ tyx=  is the streamfunction; Ω̂  is the relative vorticity; yβˆ +Ω  is 
the potential vorticty; 1−= dRa , dR  is the Rossby scale; β is the derivative of 
the Coriolis parameter with respect to latitude; J  is the Jacobian. 
The streamfunction ψ̂  is the sum of a regular component ψ and the singular 
component sψ , the latter being represented by a superposition of N Bessel vortices 
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Here δ denotes the Dirac delta function; nn IK ,  here and below – Bessel 
functions of order n; the intensities of the vortices nA  and parameters np , which 
define the horizontal scales of the vortices, are given and assumed to be constant 
(see [2]); vortex trajectories )(tnr are determined as a part of the solution.  

Substitution of (2) into (1) gives, using (3), the following equations: 
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Equation (4) determines the evolution of the regular component ψ  and 
equations (5) – the SV trajectories. If the beta effect and the regular component are 
absent ( 0ψβ == ) and apn =  (singular vorticies become the point ones), then (4) 
is satisfied identically, and (5) reduces to the well-known Hamiltonian system of 
ordinary differential equations for the coordinates of interacting vortices (see, e.g., 
[13]). If 0β ≠  and/or at the initial moment 0ψ ≠ and/or in a group of N > 1 
vortices, the scale of at least one of them is not equal to dR , then the regular 
component ψ  is generated even if it is zero at the initial moment. To describe 
the motion in this case, one is to solve the complete continuous-discrete system (4), 
(5). A generalization of equations (2) – (5) to the case of a two-layer fluid is given 
in [14, 15]. 

Rossby solitons. If all of np are equal to each other and appn ≠= , then 
the SV intensities and positions can be selected in such a special way that 
the regular component vanishes and the vortices form a system moving uniformly 
and without changing shape along latitude with the velocity lying outside of 
the Rossby-waves phase-speed range )0,β( 2

dR− . Each such system represents 
a singular Rossby soliton, and vice versa, each regular Rossby soliton is 
a superposition of the Bessel SVs (3b) with appn ≠= , which are located in 
a finite inner domain of the soliton. The relationship between two-dimensional 
Rossby solitons and Bessel SVs (3b) is discussed in more detail in [2]. Singular 
Rossby solitons in a rotating barotropic spherical layer are presented in [16]. 
"Hybrid" Rossby solitons, consisting of a singular monopole and a regular 
component, were found in a two-layer model [15]. 

 
Governing equations and conservation integrals for an isolated SV. In what 

follows, we restrict our attention to the case of a single SV, when in (3) – (5) N = 1 
and the singular component of the streamfunction sψ  equals to 
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Then equations (3) – (5) take the following form: 
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Condition (8c) means that at the initial moment there is no regular field. 
In the remainder of the paper, the main part of the discussion deals with 
the numerical study of the SV; therefore, a scale-selective frictional formulation 
with a minimal hyperviscosity K is added to the right side of Eq. (7) to ensure 
the stability of the numerical scheme presented below. 

At 0=K  the system (6) – (8) has several conservation integrals; at 0≠K , 
these integrals are changing slowly with time. These integrals can be obtained by 
using an identity valid for any sufficiently smooth function ),( yxF : 

),(ψ)( 00
22 yxAFdxdyFpF s =−∇∫∫ ;                              (9) 

 

here the area integral is taken over an unbounded plane. Multiplying (7) by the sum 
sψψ + and integrating the resulting equation over the entire plane taking into 

account (8) and (9), one obtains the energy conservation equation 
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Here 1E  is the energy of the regular component; the sum 32 EE + is the influx 

of energy from the singular vortex to the regular component; the terms 
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are due to friction. 
Further, multiplying (7) by ψψ 22 a−∇ and again using (8) and (9), 

the enstrophy conservation law is obtained in the form  
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A positive definite functional 1S is a combination of the enstrophy and 
the energy associated with the regular flow. 

Integration of (7) over the entire plane, taking into account (8c), gives 
the conservation of mass: 

∫ = 0ψdxdy .                                                 (12) 
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Сonservation of the x- and y-components of the momentum can be obtained by 
multiplying (7) by x and y, respectively, with subsequent integration over the plane 
using (9), (12): 
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The equations (13a), (13b) mean that the gravity center of the entire vortex + 
wave system (i.e., of the field sψψ + ) moves with velocity 2β dR−  along the x-axis 
and does not shift in latitude. Integrals (10) – (13) can be generalized to the case of 
any number of singular vortices on a regular background current (see [2, 14]); it 
was shown in [14] that the conservation of energy (10) and enstrophy (11) 
guarantees, on an f-plane, the stability of any pair of interacting SVs with respect to 
arbitrary sufficiently small regular perturbations. 

The original equation (1) and, consequently, (7) at 0=K  postulate 
the Lagrangian conservation of potential vorticity (PV) ys β+Ω+Ω in a fluid 
parcel. By virtue of (8a) and (8b), the SV is associated with a given fluid parcel and 
the singular part of the vorticity sΩ of this parcel remains constant (although 
infinite). Therefore, the regular part of the vorticity yq β+Ω= is conserved at 
the center of SV, i.e., knowing the SV position, 

0rr=Ω  can be determined from 

)0(β)(β 000
0

ytyq =+Ω=
=rr .                                     (14) 

The above derivation is, strictly speaking, heuristic, but (14) can also be 
derived in a more rigorous way from (7), (8). The conservation integrals obtained 
above are used below to control the operation of a numerical scheme that allows 
one study the long-term evolution of an isolated SV. 

 
3. Beta-gyres and initial evolution of SV  

Let’s suppose that 0=K  and write (7) in moving coordinates 
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Owing to (8a) and (8b), the spatial derivatives of the streamfunction in moving 

coordinates xyyx 00ψ  −+  vanish at the point of singularity )(0 trr = . At an initial 
stage of the SV evolution, the regular streamfunction and vorticity are small and 
mainly localized in the vicinity of the SV; therefore, the fourth and fifth terms in 
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(16) are small compared to the second and third terms and can be discarded. 
The resulting approximate equation is written as 
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Conditions (8) in moving coordinates associated with the vortex take 
the following form: 
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The solution of problem (17) has the form 
θcos),(φθsin),(φψ trtr cs += ,                             (18) 

 
where θ,r  are polar coordinates centered at the location of singularity, and can 
easily be found in the case of a point vortex [2], when ap = :  
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Substituting (19) into (8a), (8b), the components of the vortex velocity are 

found to be: 
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Equations (18) – (20) describe the development of beta-gyres – a secondary 

circulation dipole in the vicinity of the SV, which induces the SV movement along 
the dipole axis. Knowing the SV’s velocity, one can compute its trajectory (see 
below). In the case of a non-point SV, when ap ≠ , the analytical expressions for 
the amplitudes cs φ ,φ in (18) are unknown and are to be determined numerically 
[10]. In the non-divergent case 0=a  the problem (17) has an exact analytical 
solution for any p , as found in [17]. 

Evolution of the streamfunction ψ  at ap = , according to (18) – (20), is shown 
in Fig. 1; solutions for ap ≠  are qualitatively the same. The problem (17) is linear in 
ψ , and its solution ψ  is, in turn, linear in the beta-parameter, so the regime (17) will 
hereafter be referred to as the linear regime. The regular field ψ  here represents 
Rossby waves radiated by the singular vortex into the near zone; the absence of 
the term xβψ in equation (17a) prevents the far-field propagation of Rossby waves. 
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F i g.  1. Development of the beta-gyres in the linear model (18) – (20) for a point SV in the reference 
frame attached to the vortex (black dot in the center). Blue streamlines are negative, orange ones – 
positive; thick red line shows the vortex trajectory. The vortex intensity 011AA =  (see Table 1); 
numbers in the upper left corner indicate the maximum values of ψ ; contour interval CI=2. The size 
of the subdomain shown is 1200 × 700 with the resolution of 25 km 

 
As a result,  a symmetric dipole that changes in time and space develops in the 

vicinity of the SV; this dipole (the beta-gyres), centered at the SV, is what sets the 
SV into motion, the anticyclonic (cyclonic) beta-gyre being always located to the 
northeast (southwest) of the SV. At the very beginning, the dipole axis is directed 
nearly along the meridian, but it turns counterclockwise with time, resulting in the 
entire system moving to the northwest. 

The approximate equation (17a) and, accordingly, the solutions (18), (19) and 
(20) are applicable at small times only, since the spatial derivatives of the vorticity 
Ω  grow linearly with t , and the terms discarded in (16) eventually become, at 
some time, as large as the others. To estimate this time, let us non-dimensionalize 
the equation (16), using the period ApTv /π2 2−=  of the revolution of a fluid parcel 
around the center of the SV as the time scale, and the SV size 1−p  as the length 
scale. The scale of the regular streamfunction ψ , equal to ),max(/β 22 app=Ψ , is 
found from the condition that the first three terms in (16) are of the same order of 
magnitude. Accordingly, due to (17b) and (17c), the characteristic translation speed 
of the vortex is ),max(/β 22 apUv = . The resulting dimensionless equation has 
the following form 
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while the conditions (17b), (17c), (17d) in the dimensionless form remain 
unchanged. In (21), |)(|ψ  ,/ 00 rr −−== Kpaa s , the notations for Ω , , ,ψ 00 yx  
remain the same as before, and the parameter  
                  wv TTappAA /),max(/πβ2/π2α 22 ==Ψ= ,                                     (22) 
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where papTw β/),max( 22=  is the so-called “wave” scale, equal to 
the characteristic time during which the vortex travels the distance equal to its size 

1−p . As already mentioned, the second term in square brackets in (21) grows 
linearly with time, i.e., formally, the equation (17a) and its solution (18), (19), (20) 
are applicable at times 1α <<t , or, in the dimensional form, at wTt << . Numerical 
experiments with the full equations (7) and (8), however, demonstrate a much 
longer-term applicability of the linear solution. 

 
4. Numerical algorithm for calculating systems of singular vortices 

An obvious difficulty of numerically integrating systems (4), (5) and (7), (8) is 
associated with the singularity of the function sψ . There are two ways to work 
around this problem. The first one consists in replacing the Bessel vortex in 
the finite-difference representation of the problem (7), (8) by a similar intense 
regular vortex and carrying out the integration with sufficiently small steps in space 
and time, which ensure the stability and convergence of the scheme. The scheme’s 
quality is estimated by using the conservation integrals (10) – (14) obtained above 
and also by comparing the numerical solution with the analytical solution of 
the linear problem (17), which is close to the solution of the full problem at 
sufficiently small times. When choosing a "finite-difference SV", it is natural to 
proceed from the fact that the singular function in (6) is the solution to 
the Helmholtz problem: )(δ)(δψψ 00

22 yyxxAp ss −−=−∇ , and to replace sψ  by 
the solution ∗

sψ of the finite-difference analogue of this equation: 
 

2
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Here ∆  is a grid size; ∗
jis ,

ψ  is the singular streamfunction at the grid point ),( ji ; 

the grid point )0,0( ji  is the center of the singular vortex and ji,δ  is the Kronecker 
delta, which is equal to 1 at ji =  and is zero otherwise. 

In Fig. 2, the exact expression (6) for the point vortex )( ap = interpolated to 
the spatial grid for =dR 600 km is compared with the numerical solution of 
the equation (23) at four different spatial resolutions 200 100, 50, ,25=∆ km. 
The graphs are given in dimensionless form with the scale for the streamfunction 
equal to ∆U , where the scale of the velocity is 10=U ms-1. It is seen that for all 
resolutions the “numerical” singular streamfunction ∗

sψ coincides with the exact 
expression sψ  at all the grid nodes, except for the vortex center, where ∗

sψ  is 
finite. 
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F i g.  2. Comparison of the profiles of the “numerical” singular vortex ∗

sψ  with the exact analytical 
solution sψ  for the point SV 

 
In the finite-difference model, the corresponding singular streamfunction *ψs is 

interpolated by cubic splines to the grid nodes in the close vicinity ( ±  50 grid 
points) of the SV vortex’s center )(0 tr  (which does not necessarily coincide with 

any grid node); outside of this area, *ψs  is calculated by the exact formula (6). 
In addition, cubic splines are used to calculate the SV velocity ( 00 , yx  ) in terms of 
the spatial derivatives of the regular streamfunction ψ  in (8a) and (8b). Thus, 
knowing the SV position )(0 tr  and the regular streamfunction ψ at the moment t , 

the singular streamfunction *ψs at each grid node and the SV’s velocity ( 00 , yx  ) can 
be calculated. This allows one to find, from (7), the regular potential vorticity 

ψψ 22 a−∇  and, accordingly, the regular streamfunction ψ  and the new vortex 
position from (8a) and (8b) at the next time step. 

For this purpose, equation (7) is approximated in a finite-difference form on 
a uniform grid in an x-periodic zonal channel of the length xL  and width yL . To 
represent the spatial derivatives, the second-order central differences are used; 
integration in time is carried out using the "leapfrog" scheme. On the zonal 
boundaries of the channel, no-flow and no slip conditions ( 0ψψψ === yyyyx ) are 
utilized, the advective terms are represented using the fourth-order Arakawa 
scheme [18]; the mass and momentum constraints are also enforced [19]. 
The channel width yL is chosen to be large enough so that the streamfunction and its 
derivatives remain small near the zonal boundaries. In addition, the duration T of each 
numerical experiment was chosen not to exceed the time required for the fastest 
Rossby wave to travel the distance xL : 2β/~ dx RLT . As it will be seen, the SV zonal 
speed does not exceed the limiting velocity of Rossby waves 2β dR ; therefore, the above 
restriction on T ensures that the vortex is not affected by Rossby waves emitted by 
the SV images outside of the channel. With these constraints, the solutions of 
the channel model approximate well the SV evolution on an infinite beta-plane. 
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Model parameters used in the numerical experiments 
 

Parameter Parameter description 

51200=xL  km Channel length 

30000=yL  km Channel width 

 T = 80 days Experiment duration 

11102β −⋅= m-1·s-1 Latitudinal derivative of the Coriolis parameter 

600=dR  km Rossby deformation radius 

0mAA = , 3
0 πβ2 dRA = , 11 ,9 ,7 ,5 ,3 ,1=m  Vortex intensity 

 

=vL  

 300 km Vortex size: small SV 

 600 km Vortex size: point SV 

1200 km Vortex size: large SV 
1−= dRa  Inverse Rossby radius  

1−= vLp  Inverse size of the SV 

25=∆=∆=∆ yx km Spatial grid size 

=∆t 30 s Timestep 

13102 ⋅=K m4·s-1 Hyperviscosity 

 

In the second method for solving the problem of singular coefficients in 
the systems (4), (5) and (7), (8), the Lagrangian integral (14) is used. Knowing 
the vortex position at time t , it is possible to determine the value of the regular 
vorticity Ω  at the center of the vortex without solving equations (4), (7), and use 
this value when to compute the regular streamfunction near the center of the SV. 
This numerical algorithm was also implemented (see [10] and Section 5 below); 
the numerical results obtained by using these two different algorithms turned out to 
be very close. 

To study the dynamics of an isolated monopole on the beta-plane, a number of 
numerical experiments were carried out, with parameters summarized in the table. 
The parameters chosen are typical for the eddies in the mid-latitude atmosphere, 
but all the results are simply recalculated for the case of the ocean by decreasing 
the spatial scales ∆,,,, vdyx LRLL  by a factor of 10, the characteristic velocities by 
a factor of 100, and increasing the time scale by a factor of 10. 

 
5. Results of numerical experiments 

The solution of the problem (21), (17b), (17c), (17d) depends on two 
dimensionless parameters α  and a , which completely determine the regime of 
the SV evolution. If the horizontal scale of the vortex 1−= pLv is fixed, then this 
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evolution is determined the single parameter α , i.e., by the ratio A/β . Here we 
only consider the case of  a point vortex (cyclone), for which the solution (18) – 
(20) is also an exact solution of problem (21), (17b), (17c), (17d) at 0α = , i.e., in 
the limit of an infinitely large SV intensity A , small and large vortices (see table) 
behave in the same way (see also [10]). 

 

Large intensity A. The evolution of the vortex, computed by using the full 
equations (7), (8) in the case of the large intensity 011AA =  (see table) is shown in 
Fig. 3. Similar to the linear regime shown in Fig. 1, the singular cyclone moves to 
the northwest, but the field ψ has a much more complex structure. In the vicinity of 
the vortex, the β-gyres appear again, their intensity increasing with time, but they 
quickly cease to be symmetric and, starting from about 5.3=t day, the intensity of 
the cyclonic β-gyre stops to grow. 

The singular vortex gradually drifts into the β-gyre of the opposite sign (that 
is, into the anticyclonic beta-gyre for a cyclonic SV), which cannot happen in 
the “purely” linear regime (see Fig. 1). The dispersion term xβψ in (7) is 
responsible for the far-field radiation of Rossby waves, and a wave tail appears to 
the east of the vortex (a qualitative description of this process can be found, for 
example, in [10] and [20]). Nevertheless, the tail amplitude remains small, at least 
for the calculated times (here, up to 80=t  days). 

 

 
 

F i g.  3. Evolution of the regular streamfunction ψ  computed using the full system of equations. 
Thin gray contours show zero streamlines; other notations and parameters are the same as in Fig. 1 
 

It is important that these changes are not accompanied by the loss of 
the connection between the vortex and the cyclonic β-gyre, as is the case during 
the nonlinear stage of the flow development (see [10] and below), and the resulting 
velocities and trajectory of the vortex are close to those calculated using the linear 
model (17) (see Fig. 4). We can thus call the evolution regime at large intensities A 
(or, equivalently, at small β) quasilinear. 
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F i g.  4. Trajectories and velocities of the point vortex for various values of A. Left column: 
011AA = ; middle column: 05AA = ; right column: 0AA =  

 
Small intensity A. With a decrease in the intensity of the vortex A (and/or with 

an increase in β), the evolution of the vortex becomes more complicated: 
a relatively short quasilinear stage is replaced by a nonlinear one, when, in (7), 
the dispersion term xβψ and self-interactions of the regular 
component ),ψ( QJ become important. A typical example of this evolution is shown 
in Fig. 5 for the case 0AA = . At first, up to about 10=t day, the evolution only 
slightly deviates from the quasilinear regime in Figs. 1, 3: the regular field consists 
mainly of a dipole in the vicinity of the vortex and the waves, which follow 
the vortex, but do not significantly affect the motion of the vortex. The same 
conclusion can be drawn from the velocity graphs in Fig. 4 for 0AA = : up to about 

10=t , the SV velocity components are close to “linear”. At the same time, 
the intensity of the anticyclonic β-gyre and that of the wave field at 0AA = grow 
(in relative units) much faster than in the case of the large-intensity SV with 
A=11A0. This growth is accompanied by a faster and deeper penetration of the SV 
into the anticyclonic β-gyre. In this case, the intensity of the cyclonic β-gyre, after 
the initial relaxation period, practically does not increase, remaining 
at approximately constant level, which is much lower than the intensity of 
the anticyclonic β-gyre at sufficiently long times. 

After =t 10 days, the character of the SV evolution changes dramatically. 
Both components of the vortex velocity cease to change monotonically with time 
and instead begin to oscillate around some mean levels (Fig. 4). The average level 
of the zonal velocity gradually decreases in magnitude, i.e., the vortex drift to 
the west gradually slowing down with time. The meridional velocity of the vortex, 
after a sharp increase and then a decrease at the linear stage, rapidly increases 
again, oscillating around the value of about 1.5 ms–1 (Fig. 4). Accordingly, 
the vortex moves fairly quickly along the meridian to the north. Thus, for t > 10 
days, the solution already strongly deviates from the linear regime (17) – (20), 
which is why we called this stage nonlinear. 
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F i g.  5. The same as in Fig. 3 but for 0AA = . Contour interval CI=0.5 

The streamfunction field for t > 10 days is also substantially modified in 
comparison with that in the quasilinear regime (compare Figs. 1, 3, and 5). 
The vortex continues to move inside the anticyclonic β-gyre and eventually finds 
itself in the immediate vicinity of the center of this gyre (see Fig. 6). 
The anticyclonic beta gyre and the vortex “inside” of it make up a vortex pair 
drifting to the northwest. As the vortex approaches the center of the anticyclonic 
beta-gyre, the intensity of the latter increases rapidly; at the same time, this beta-
gyre becomes more compact, acquiring an almost circular shape. Meanwhile, 
the magnitude of the cyclonic beta-gyre, starting from a certain moment, ceases to 
grow and turns out to be much smaller than the intensity of the anticyclonic beta-
gyre. Over time, the cyclonic beta-gyre “spreads out” and eventually loses its direct 
connection with the singular vortex (see Fig. 5). 

 

 
 

F i g.  6. The drift of a singular cyclone towards the center of the anticyclonic β-gyre. The dot denotes 
the center of the singular cyclone; the x-symbol – the center of the β-gyre; red curves trace the vortex 
trajectory; p = a, 0AA = . The size of the sub-domain shown is 50 × 50, i. e., approximately, 2 × 2 
Rossby radii 
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Another typical difference between the nonlinear regime and the quasilinear 
regime is that the Rossby waves radiated by the vortex cease to “obediently” 
follow it (as, for example, in Figs. 3 and 5 at 15=t  days) and begin to interact with 
the vortex (Fig. 5, 30=t days and further). It is this interaction that explains 
the appearance of the fluctuations in the velocity graphs in Fig. 4; a simple analysis 
of this and other nonlinear regimes shows that the number of the vortex’s zonal-
velocity maxima always coincides with the number of Rossby wave crests that 
the vortex crosses during its evolution. 

An important conclusion that can be drawn from Fig. 4 is that the linear 
regime describes well the motion of the vortex, especially its trajectory, at times 
significantly exceeding the formal time of applicability of the linear equations (17). 
In Section 3, we showed that formally this time does not exceed the wave scale 

papTw β/),max( 22= equal to dRβ/1 for the point vortex. For our parameters 
1β/1 ≈= dw RT day and from Fig. 4, it follows that the actual time of applicability is 

much longer than wT , but strongly depends on the intensity of the vortex A: 
the larger A, the longer the linear theory works. At a large intensity ( 011AA = ) 
the vortex velocities are close to linear, and the trajectories in the linear case and 
complete theory practically coincide throughout the entire computation time. At 
an average intensity ( 05AA = ), the difference in  velocity increases, but 
the trajectory remains close to linear, at least up to 36=t day (the dots on 
the trajectory graphs are separated by 3 days). Even in the case of a vortex of small 
intensity ( 0AA = ) the trajectory is close to linear for at least 15 days, which is 
more than an order of magnitude longer than wT . 

 
Integrals of motion. The evolution of the integrals of motion obtained in 

Section 2 is shown in Fig. 7 for different vortex intensities. Friction does not affect 
the momentum integral, which is well conserved in all cases. The same is true for 
the energy integral, which is only weakly affected by friction. It can be seen that 
the terms 1E , )(0

ψ tA rr=− in (10) have a similar magnitude, while the magnitude of 

their sum is much less. Comparison of this sum with the time-integrated dissipative 
term 21 DD +  leads to the conclusion that it is indeed the dissipation that is 
responsible for the “non-conservation” of energy, as follows from equation (10a). 

Friction has the larger effect on the enstrophy 01 βAyS − , which noticeably 
decreases over time in all cases. According to (11a), the decay of the sum 

01 βAyS − must be due to the time-integrated dissipative term 3D , which is 
observed in all cases. 

Some of the qualitative features of the behavior of a singular monopole can be 
interpreted in terms of the above conservation integrals. For example, in 
the absence of friction (i.e. at 03 =D ), it follows from (11a) that the growth of 
regular enstrophy 1S  (which does take place in all cases; see Fig. 7) should lead to 
a monotonic drift of the singular cyclone ( 0>A ) to the north, since this growth 
should be compensated by an increase in the value of 02 βAyS =−  in (11a). 
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Similarly, the merger of the cyclone with the anticyclonic β-gyre can be derived 
from the conservation of energy. For example, from (10a) it follows that for a point 
vortex in the absence of friction 

 

0/ψ 1)(0
>∂=∂

=
AEttt rr ,                                       (24) 

 

since the energy of the regular component 1E  increases monotonically, as can be 
seen from Fig. 7. Therefore, the value of )(0

ψ trr= increases with time, i.e., 

the singular vortex drifts from the axis of the β-gyres dipole (where 0ψ = ) to 
the region of positive values ψ  – hence, to the anticyclonic β-gyre. The same is 
true for large and small vortices, since in both cases the sum 21 EE +  increases 
with t  (not shown here). 

 

 
 

F i g.  7. Integrals of motion for the singular vortices of different intensity. Top row: zonal 
momentum; second row: energy; third row: enstrophy; bottom row: potential vorticity  

 
The conservation of momentum, energy, and enstrophy indicates that 

the numerical scheme developed here approximates the solution of the original 
problem with a sufficient degree of accuracy. The Lagrangian characteristic – 
the potential vorticity q of the regular field at the center of the vortex (see (14)) – 
is nearly conserved for the vortex of large intensity with 11=m ; this conservation 
is worse for 5=m and the worst – for 1=m . In principle, this is understandable, 
since the relation (14) is strictly obtained only for a “truly” singular vortex with 
a δ-function-like vorticity. The “finite-difference” singular vortex used by us 
obviously differs from the “true” one, and this difference increases with 
the decrease of m . Nevertheless, an important question remains: How does the poor 
“conservation” of q  affect the trajectory and velocities of the vortex? 

For verification, we computed the evolution of the vortex using the alternative 
numerical scheme mentioned above in Section 4. In this scheme, the conservation 
of potential vorticity (14) at the center of the vortex is hardwired; the remaining 
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problem is that, in the absence of viscosity, there is a strong variability of the PV in 
the near vicinity of the vortex [2], which does not allow one to compute the PV 
with the sufficient accuracy at the grid nodes close to the center of the vortex. 
At the same time, even the minimum viscosity leads to almost instantaneous 
homogenization of the PV in the close vicinity of the SV (see Fig. 8). This 
homogenization has practically no effect on the regular component, but it allows us 
to develop a modified numerical algorithm. In this algorithm, the regular vorticity 
Ω  at the center of the vortex is determined, at each time step, from (14), and that at 
the four nearest nodes – from the known value of the homogenized potential 
vorticity. Obviously, with this approach, there is no difference between the “exact” 
singular vortex (6) and its finite-difference analog, since the location of singularity 
is never involved in approximating the derivatives of the flow fields. The important 
result is that the numerical solutions in both approaches are very close to each 
other, i.e., the variations of the regular PV near the center of the vortex do not 
practically affect either the structure of the regular field or the velocity and 
trajectory of the SV. 

 

 
 

F i g.  8. Evolution of the total potential vorticity ya β+ψ−ψ∇ 22  for the point SV at initial stage. 
The isolines of potential vorticity are shown in the 50 × 50 subdomain with the origin at the center of the 
vortex 

  
6. Discussion of the results 

We have presented a brief overview of the theory of the singular vortices on 
a beta-plane, first proposed in [2]. The main emphasis was on recent numerical 
studies of the evolution of an individual singular monopole interacting with 
the regular flow it generates [10]. Two numerical algorithms have been developed 
and implemented to compute such an evolution. In the first of these algorithms, 
the “theoretical” singular vortex is replaced by an equivalent “numerical” regular 
vortex, compatible with the finite-difference formulation. Another algorithm uses 
the Lagrangian conservation of the regular potential vorticity at the center of 
the vortex and homogenization of the PV in its vicinity created by an arbitrarily 
small friction. Both algorithms give practically identical results, demonstrating that 
the proposed model, firstly, accurately reproduces the initial quasilinear stage of 
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the SV evolution (which is calculated analytically for the point SV) and, secondly, 
preserves several invariants of motion derived from the original continuous 
equations. 

The vortex evolution consists of two stages (without loss of generality, we will 
discuss the case of a singular cyclone). At the first (quasilinear) stage, the SV 
motion to the northwest is induced by a secondary dipole in the vicinity of the SV 
(the so-called β-gyres), generated via the near-field radiation of Rossby waves by 
the SV. In this case, the zonal velocity of the vortex rapidly decreases from zero to 
a certain negative minimum value; meanwhile, the meridional velocity at first 
rapidly increases, and then just as quickly drops to its minimum (but still positive) 
value. The duration of the quasilinear stage strongly depends on the SV intensity: 
an increase (decrease) in the intensity prolongs (shortens) this stage and deepens 
(increases the magnitude) of the velocity minima. 

The quasilinear stage is gradually replaced by a nonlinear stage, during which 
the dipolar structure of the regular field in the vicinity of the SV is destroyed, 
the cyclonic β-gyre loses its connection with the SV and gradually disappears. 
The singular vortex merges with the anticyclonic β-gyre, together forming 
a compact vortex pair, which continues to move northwestward and interacts with 
the Rossby waves emitted by the vortex. This interaction leads to oscillations of 
the vortex velocity components, the magnitude of SV zonal velocity (directed to 
the west) decreasing, while its meridional velocity remaining at a constant level. 
With decreasing SV intensity, its zonal velocity, on average, decreases in 
magnitude, and its meridional velocity increases; accordingly, the SV trajectory 
bends towards the pole. The nonlinear stage of the SV evolution on a beta-plane 
was first presented in our work [10]. 

In this study, we only presented the results for the point vortex with ap = ; 
the evolution of large and small vortices with ap ≠  is qualitatively similar, with 
some quantitative differences described in [10]. 
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