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Purpose. The aim of the paper is to study dependence of the homogeneous fluid movement velocity 
(moving in the direction of wave propagation and formed by nonlinear interaction of the wave 
harmonics) upon the characteristics of the ice cover. 
Methods and Results. Based on the movement velocity potential of the fluid of finite depth obtained 
in a form of an asymptotic expansion up to the values of the third order of smallness, analyzed was 
the velocity of fluid particles movement under the floating elastic ice at nonlinear interaction of 
the wave harmonics. Influence of the ice cover thickness and elasticity module, nonlinearity of the ice 
vertical acceleration, and the amplitude of the second interacting harmonic upon the components of 
the orbital velocity of the fluid particles movement under the floating ice was studied.  
Conclusions. It is shown that the influence of nonlinearity of the vertical displacements’ acceleration 
of floating ice upon the components of the fluid movement velocity is manifested in an increase of 
the phase shift. A change of a sign of the second interacting harmonic results in transformation of 
the profiles and decrease of the phase. Growth of the Young’s modulus value is manifested in 
a noticeable increase of the phase shift and in a weak increase of the maximum values of the fluid 
movement velocity components as compared to the case when there is no ice. 
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Introduction 
Velocities of the progressive fluid displacement towards the motion of finite 

amplitude waves were studied in [1–3] at infinite, and in [4–6] at a finite depth of 
a basin with a free surface. In a linear formulation, the effect of floating broken ice 
on the velocity of wave currents in a homogeneous fluid was considered in [7]. 
Dependence of the components of the orbital velocity of motion of fluid particles 
with an open surface on the characteristics of a traveling periodic wave of finite 
amplitude was studied in [8], and under a floating elastic ice cover – in [9]. 
Experimental studies of the influence of the under-ice currents velocity on 
the parameters of flexural-gravitational waves are presented in [10]. 

In the present paper, based on the obtained solution to the problem of 
oscillations formed by nonlinear interaction of harmonics of progressive surface 
waves in the ice-fluid system [11], the dependence of the distribution of 
the components of the orbital velocity of homogeneous fluid particles motion along 
the wavelength of the formed wave on the ice cover characteristics was analyzed. 
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The results obtained can be used to interpret the results of laboratory and field 
observations, in the development of technologies and systems for monitoring sea 
basins during the ice period. 

Problem statement 
Consider a homogeneous ideal incompressible fluid of constant depth H. Its 

surface is covered with floating ice with a thickness h = const. Fluid and ice cover 
in horizontal directions is not limited. Let us study the effect of ice on the orbital 
velocities of fluid particles motion, formed by the interaction of two harmonics 
of finite amplitude waves. Let us assume that the fluid movement is 
potential, the ice oscillations are continuous, and the dimensionless variables 

111 ,, tkgtkzzkxx === , ∗= ζζ k , ( ) ∗= φφ 2 kgk , where k is the wave number; 
g is the acceleration of gravity; t is the time; φ(x, z, t) is the fluid velocity potential, 
then the problem is to solve the Laplace equation 

 

ζ,,0φφ ≤≤−∞<<∞−=+ zHxzzxx                                  (1) 
 

for the velocity potential with boundary conditions on the ice – liquid surface (z = ζ) 
 

p
txz

k
x

kD =












∂
∂

−






∂
∂

∂
∂

+
∂
∂ φφ

2
1κζ 2

4

4
4

1 ,                                  (2) 



















∂
∂

+






∂
∂

−−
∂
∂

=
22 φφ

2
1ζφ

zxt
p  

and at the basin bottom (z = –H)  

.0φ
=

∂
∂

z
                                                           (3) 

 

At the initial moment of time (t = 0) 
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Е, h, ρ1 and ν are the modulus of normal elasticity, thickness, density and Poisson's 
ratio of ice, respectively; ρ is the fluid density; ζ(x, t) is the elevation of the ice – 
fluid surface, at the initial moment of time equal to the function f(x). The velocity 
potential and the elevation of the ice – liquid surface at z = ζ are related by 
the kinematic condition  

0φφζζ
=

∂
∂

+
∂
∂

∂
∂

−
∂
∂

zxxt
.                                          (5) 

 

In dynamic condition (2), the expression with the factor κ is the inertia of 
vertical ice displacements, where the first term in parentheses of this expression 
characterizes the nonlinearity of its vertical acceleration [11]. 
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Expressions for the components of the orbital velocity of fluid particles motion  
Solution of the problem (1) – (5) was found by the method of multiple scales 

[12] in the form of equations for three approximations, taking into account 
the nonlinearity of the acceleration of vertical displacements of elastic ice [11]. 
Consider periodic waves, specifying the function f(x) in the appropriate form. For 
the case of interaction of traveling periodic waves, when the first approximation is 
given in the following form 

 

),(βτθ,θ2cosθcosζ 21011 TTTxa ++=+= , 
 

where a1 is the amplitude of the second interacting harmonic; tTtT 2
21 ε,ε == , 

and β(Т1, Т2) is found from the second and third approximations, the expression 
that determines the velocity potential up to the third approximation in 
dimensionless variables has the form as follows 
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variables, the expression for the velocity potential is as follows: 
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And in the expressions for b20, b30, b11, b12, b23, b24, b33, b34, b35, b36, σ1 and σ2 
the argument of hyperbolic functions is replaced by kH. Hereinafter, for 
expressions in dimensional variables, the symbols "x", "z", "t" are omitted from 
the index 1, and for "ϕ" – "*". 

Thus, the horizontal ( xu ∂∂= φ ) and vertical ( zw ∂∂= φ ) components of 
the velocity of homogeneous fluid motion are determined by 
the expressions
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Note that the obtained solution is valid outside small neighborhoods of 
the resonance values of the wave numbers ki (i = 1...4), which are the positive real 
roots of the equations [11] 

 

6...3,0cthτκτμ 222 ==−− iiHikii .                                   (6) 
 

The left side of expression (6) is included in the denominator b3i.  
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Analysis of the ice cover effect on the velocity components  
of fluid motion 

Evaluation of the influence of the floating ice characteristics on the velocity 
components in the direction of the nonlinear wave was carried out at ρ1/ρ = 0.87, 
v = 0.34, 0 ≤ h ≤ 2 m and E, equal to 0.5·108; 109; 3·109 N/m2. 

The u and w distributions along the wave profile are shown in Fig. 1 at t = 3 h, 
a = 1 m, λ = 392.5 m, Н = 45 m, h = 1 m, E = 3·109 N/m2 with and without vertical 
ice acceleration. It can be seen that when the formed nonlinear wave propagates in 
the negative direction of the X axis, the effect of taking into account 
the nonlinearity of the acceleration of vertical displacements of ice on the fluid 
velocity components is manifested in the phase shift increase. A change in the sign 
of the second interacting harmonic from plus to minus leads to a noticeable 
transformation of the profiles and to a decrease in the phase (Fig. 1, b). The u and 
w profiles obtained taking in account the vertical acceleration nonlinearity lag 
behind the profiles obtained without it. The form of the generated perturbation is 
non-linear. 

 

 
 
F i g.  1. Distribution of the components of the fluid movement velocity along the profile of 
a nonlinear wave at а1 > 0 (а) and а1 < 0 (b) at λ/H = 8.72 with the regard (dashed line) and with no 
regard (solid line) for the ice vertical acceleration 
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In the case of short waves (Fig. 2), the influence of vertical acceleration 
nonlinearity retains its direction, and the profile shape in the range of considered 
wave numbers remains nonlinear. Fig. 2 shows the distribution of the velocity 
components at t = 540 s, a = 0.6 m, λ = 62.8 m, Н = 70 m, h = 0.6 m, E = 
 = 3·109 N/m2. For extreme values on the profile of the horizontal velocity 
component, as well as in the linear case and in the case of propagation of a periodic 
wave of finite amplitude [9], the values of the vertical component are equal to zero. 
At the same time, the extreme values on the vertical velocity component profile 
correspond to non-zero values of its horizontal component. 
 

 

 
 

F i g.  2. Distribution of the components of the fluid movement velocity along the profile of 
a nonlinear wave at а1 > 0 (а) and а1 < 0 (b) at λ/H = 0.89 with the regard (dashed line) and with no 
regard (solid line) for the ice vertical acceleration 
 

Influence of the elastic module of solid ice cover on the velocity components 
in the case of taking into account the vertical acceleration of ice is shown in Fig. 3. 
Here t = 9900 s, a = 2 m, λ = 785 m, Н = 70 m, h = 2 m. The figure shows that 
an ice rigidity increase is manifested in a noticeable increase in the phase shift and 
a slight increase in the maximum values of the fluid velocity components. The sign 
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change of a1 from plus to minus deforms the profile both qualitatively and 
quantitatively (Fig. 3, b). In this case, an increase in ice rigidity, as in the case of 
a1 > 0, leads to a noticeable increase in the phase with the regard to the phase shift 
when E = 0. 
 

 

 
 

F i g.  3. Distribution of the components of the fluid movement velocity along the profile of 
a nonlinear wave with the regard for the ice vertical acceleration at а1 > 0 (а) and а1 < 0 (b). Solid line 
corresponds to the value Е = 3·109 N/m2, dashed line – to Е = 109 N/m2 and dashed-dotted one – to Е = 0 
 

Ratio of the maximum values of the vertical velocity component (W) and 
the horizontal velocity component (U) for the case of broken ice (h ≠ 0, E = 0), 
taking into account the vertical acceleration nonlinearity and the case when there is 
no ice (h = 0), is shown in Fig. 4. Here a = 1 m, H = 30 m, E = 0. Solid line – h = 1 
m, a1 > 0; dashed line – h = 1 m, a1 < 0; dash-dotted line with two dots – h = 0, 
a1 > 0; the dash-dotted line is a linear approximation at h = 1 m, a1 > 0. From 
the analysis of the graphs, it follows that in the considered range of wave numbers, 
the distribution of W/U values over k is less than one; therefore, during 
the propagation of the formed nonlinear wave, the vertical velocity component 
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does not exceed the horizontal one. This is also observed during the propagation of 
a periodic wave of finite amplitude [9]. In the region of small values of the wave 
numbers, the W/U change is not monotonous, excluding the linear approximation. 
With the k increase in the presence of ice, the values of the ratio of the velocity 
components decrease in comparison with the case of the ice cover absence on 
the fluid surface. At the same time, for the linear approximation, the W/U ratio 
values obtained for a1 > 0 and h ≠ 0 are the smallest. 

 

 
 
F i g.  4. Distribution of the W/U ratio value over the wave number at E = 0 
  

 
 

F i g.  5. Distribution of the W/U ratio value over the wave number at E = 3·109 N/m2 
 
Influence of the amplitude of the second interacting harmonic on the W/U 

ratio, taking into account the nonlinearity of the vertical acceleration of ice and 
E ≠ 0, is shown in Fig. 5 for the long-wave range of wave numbers, where there are 
no resonant values [11]. Here E = 3·109 N/m2, H = 100 m, a = 1 m, h = 1 m. 
The solid and dashed lines correspond to the cases a1 > 0 and a1 < 0, respectively. 
It can be seen that the change in the a1 sign is manifested both in an increase and 
decrease of the W/U ratio values. As k increases, the difference between the values 
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grows. Note that in the shortwave range the W/U ratio at E ≠ 0 and a1 > 0 is greater 
than the W/U ratio at E = 0 and a1 > 0, while at E ≠ 0 and a1 < 0 it is smaller than at 
E = 0 and a1 < 0. 

Conclusion 
Based on the velocity potential of a finite depth fluid, obtained as 

an asymptotic expansion to values of the third order of smallness, the velocity of 
liquid particles under floating elastic ice is analyzed in the case of nonlinear 
interaction of wave harmonics. Influence of the ice cover thickness and elasticity 
module, the nonlinearity of the vertical acceleration of ice and the amplitude of 
the second interacting harmonic on the components of the orbital velocity of 
motion of fluid particles under floating ice is studied. Influence of floating broken 
ice on the velocity components is studied, and the case of propagation of a formed 
wave of finite amplitude in a basin with a free surface is also considered. 

It is shown that the influence of the nonlinearity of the vertical displacements’ 
acceleration of floating ice on the components of the fluid velocity is manifested in 
the phase shift increase. The sign reversal of the second interacting harmonic leads 
to a significant transformation of the profiles and a decrease in the phase. This 
effect is shown in the case of both short and long waves. Thus, neglecting 
the nonlinearity of the vertical acceleration of ice can lead to noticeable errors in 
determining the phase shift. 

An increase in the value of the Young's modulus leads to an increase in 
the phase shift and an insignificant increase in the maximum values of the fluid 
velocity components with floating ice in comparison with the case when ice is 
absent. The phase also increases with an increase in the elastic ice thickness, and in 
the case of broken ice, it decreases. 

Ratio of the maximum values of the vertical and horizontal velocity 
components in the considered range of wave numbers with an elastic module equal 
to zero is less than one. Consequently, during the propagation of a wave formed by 
the nonlinear interaction of wave harmonics, the vertical component of the velocity 
does not exceed the horizontal one. This is also observed during the propagation of 
a periodic wave of finite amplitude. A comparison of the W/U ratio distributions, 
obtained with and without the nonlinearity of the vertical acceleration of elastic ice, 
indicates its weak influence on the ratio. In this case, the change in the sign of 
the amplitude of the second interacting harmonic, both in the absence and in 
the presence of ice elasticity, has a noticeable effect. 
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