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Purpose. The aim of the paper is to study dependence of the homogeneous fluid movement velocity
(moving in the direction of wave propagation and formed by nonlinear interaction of the wave
harmonics) upon the characteristics of the ice cover.

Methods and Results. Based on the movement velocity potential of the fluid of finite depth obtained
in a form of an asymptotic expansion up to the values of the third order of smallness, analyzed was
the velocity of fluid particles movement under the floating elastic ice at nonlinear interaction of
the wave harmonics. Influence of the ice cover thickness and elasticity module, nonlinearity of the ice
vertical acceleration, and the amplitude of the second interacting harmonic upon the components of
the orbital velocity of the fluid particles movement under the floating ice was studied.

Conclusions. It is shown that the influence of nonlinearity of the vertical displacements’ acceleration
of floating ice upon the components of the fluid movement velocity is manifested in an increase of
the phase shift. A change of a sign of the second interacting harmonic results in transformation of
the profiles and decrease of the phase. Growth of the Young’s modulus value is manifested in
a noticeable increase of the phase shift and in a weak increase of the maximum values of the fluid
movement velocity components as compared to the case when there is no ice.
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Introduction

Velocities of the progressive fluid displacement towards the motion of finite
amplitude waves were studied in [1-3] at infinite, and in [4-6] at a finite depth of
a basin with a free surface. In a linear formulation, the effect of floating broken ice
on the velocity of wave currents in a homogeneous fluid was considered in [7].
Dependence of the components of the orbital velocity of motion of fluid particles
with an open surface on the characteristics of a traveling periodic wave of finite
amplitude was studied in [8], and under a floating elastic ice cover — in [9].
Experimental studies of the influence of the under-ice currents velocity on
the parameters of flexural-gravitational waves are presented in [10].

In the present paper, based on the obtained solution to the problem of
oscillations formed by nonlinear interaction of harmonics of progressive surface
waves in the ice-fluid system [11], the dependence of the distribution of
the components of the orbital velocity of homogeneous fluid particles motion along
the wavelength of the formed wave on the ice cover characteristics was analyzed.
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The results obtained can be used to interpret the results of laboratory and field
observations, in the development of technologies and systems for monitoring sea
basins during the ice period.
Problem statement

Consider a homogeneous ideal incompressible fluid of constant depth H. Its
surface is covered with floating ice with a thickness h = const. Fluid and ice cover
in horizontal directions is not limited. Let us study the effect of ice on the orbital
velocities of fluid particles motion, formed by the interaction of two harmonics
of finite amplitude waves. Let us assume that the fluid movement is
potential, the ice oscillations are continuous, and the dimensionless variables

x=kx, z=kzg, t=1/kgt,, {=k{", (pz(kz/ﬁ)(p*,wherekis the wave number;

g is the acceleration of gravity; t is the time; ¢(x, z, t) is the fluid velocity potential,
then the problem is to solve the Laplace equation
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E, h, p1 and v are the modulus of normal elasticity, thickness, density and Poisson's
ratio of ice, respectively; p is the fluid density; {(x, t) is the elevation of the ice —
fluid surface, at the initial moment of time equal to the function f(x). The velocity
potential and the elevation of the ice — liquid surface at z = { are related by
the kinematic condition
&_&do 0 _, ®
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In dynamic condition (2), the expression with the factor « is the inertia of
vertical ice displacements, where the first term in parentheses of this expression
characterizes the nonlinearity of its vertical acceleration [11].
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Expressions for the components of the orbital velocity of fluid particles motion

Solution of the problem (1) — (5) was found by the method of multiple scales
[12] in the form of equations for three approximations, taking into account
the nonlinearity of the acceleration of vertical displacements of elastic ice [11].
Consider periodic waves, specifying the function f(x) in the appropriate form. For
the case of interaction of traveling periodic waves, when the first approximation is
given in the following form

1 =C0s0+a,c0520, 0=x+1T,+p(T,T,),

where a; is the amplitude of the second interacting harmonic; T, =et, T, =&t

and B(71, T») is found from the second and third approximations, the expression
that determines the velocity potential up to the third approximation in
dimensionless variables has the form as follows
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At that by, =by, =a,=a;=l,=l,=l,=lg=j=j,=m =m,=0. In dimensional
variables, the expression for the velocity potential is as follows:
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And in the expressions for bzo, b3o, b11, blz, bz3, b24, b33, b34, b35, bse, o1 and 02
the argument of hyperbolic functions is replaced by kH. Hereinafter, for
expressions in dimensional variables, the symbols "x", "z", "t" are omitted from
the index 1, and for "@" — "*".

Thus, the horizontal (u=0dgp/ox) and vertical (w=0dgp/dz) components of

the velocity  of  homogeneous  fluid  motion are  determined by
the expressions
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Note that the obtained solution is valid outside small neighborhoods of
the resonance values of the wave numbers k; (i = 1...4), which are the positive real
roots of the equations [11]

w, —i*t’xk —it’cthiH =0,i=3...6. (6)
The left side of expression (6) is included in the denominator bs;.
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Analysis of the ice cover effect on the velocity components
of fluid motion

Evaluation of the influence of the floating ice characteristics on the velocity
components in the direction of the nonlinear wave was carried out at pi/p = 0.87,
v=0.34,0<h<2mandE, equal to 0.5-10%; 10% 3-10° N/m?,

The u and w distributions along the wave profile are shown in Fig. 1 att=3 h,
a=1m,1=3925m, H=45m, h=1m, E = 3-10° N/m? with and without vertical
ice acceleration. It can be seen that when the formed nonlinear wave propagates in
the negative direction of the X axis, the effect of taking into account
the nonlinearity of the acceleration of vertical displacements of ice on the fluid
velocity components is manifested in the phase shift increase. A change in the sign
of the second interacting harmonic from plus to minus leads to a noticeable
transformation of the profiles and to a decrease in the phase (Fig. 1, b). The u and
w profiles obtained taking in account the vertical acceleration nonlinearity lag
behind the profiles obtained without it. The form of the generated perturbation is
non-linear.
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F i g. 1. Distribution of the components of the fluid movement velocity along the profile of
a nonlinear wave at a1 > 0 (a) and a1 < 0 (b) at A/H = 8.72 with the regard (dashed line) and with no
regard (solid line) for the ice vertical acceleration
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In the case of short waves (Fig. 2), the influence of vertical acceleration
nonlinearity retains its direction, and the profile shape in the range of considered
wave numbers remains nonlinear. Fig. 2 shows the distribution of the velocity
components at t = 540 s, a=06 m, A=628m, H=70m, h=0.6m, E =
=3-10° N/m?. For extreme values on the profile of the horizontal velocity
component, as well as in the linear case and in the case of propagation of a periodic
wave of finite amplitude [9], the values of the vertical component are equal to zero.
At the same time, the extreme values on the vertical velocity component profile
correspond to non-zero values of its horizontal component.
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F i g. 2. Distribution of the components of the fluid movement velocity along the profile of
a nonlinear wave at a1 > 0 (a) and a1 < 0 (b) at AH = 0.89 with the regard (dashed line) and with no
regard (solid line) for the ice vertical acceleration

Influence of the elastic module of solid ice cover on the velocity components
in the case of taking into account the vertical acceleration of ice is shown in Fig. 3.
Here t=9900s, a=2m, A=785m, H=70m, h = 2m. The figure shows that
an ice rigidity increase is manifested in a noticeable increase in the phase shift and
a slight increase in the maximum values of the fluid velocity components. The sign
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change of a; from plus to minus deforms the profile both qualitatively and
quantitatively (Fig. 3, b). In this case, an increase in ice rigidity, as in the case of
a; > 0, leads to a noticeable increase in the phase with the regard to the phase shift
when E = 0.
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b

F i g. 3. Distribution of the components of the fluid movement velocity along the profile of
a nonlinear wave with the regard for the ice vertical acceleration at a1 > 0 («) and a1 < 0 (b). Solid line
corresponds to the value E = 3-10° N/m?, dashed line — to £ = 10° N/m? and dashed-dotted one —to £ =0

Ratio of the maximum values of the vertical velocity component (W) and
the horizontal velocity component (U) for the case of broken ice (h = 0, E = 0),
taking into account the vertical acceleration nonlinearity and the case when there is
no ice (h = 0), is shown in Fig. 4. Herea=1m,H=30m, E=0. Solid line—h=1
m, a; > 0; dashed line — h = 1 m, a; < 0; dash-dotted line with two dots — h = 0,
a; > 0; the dash-dotted line is a linear approximation at h = 1 m, a; > 0. From
the analysis of the graphs, it follows that in the considered range of wave numbers,
the distribution of W/U values over k is less than one; therefore, during
the propagation of the formed nonlinear wave, the vertical velocity component
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does not exceed the horizontal one. This is also observed during the propagation of
a periodic wave of finite amplitude [9]. In the region of small values of the wave
numbers, the W/U change is not monotonous, excluding the linear approximation.
With the k increase in the presence of ice, the values of the ratio of the velocity
components decrease in comparison with the case of the ice cover absence on
the fluid surface. At the same time, for the linear approximation, the W/U ratio
values obtained for a; > 0 and h = 0 are the smallest.

0.8
0.6

0.4

k, m!
0 T T | | !

0 002 004 006 008 0.1

Fig. 4. Distribution of the W/U ratio value over the wave number at E =0

wiu

Kk, m!
0 T T T |

0 0.008 0.016

Fig. 5. Distribution of the W/U ratio value over the wave number at E = 3-10° N/m?

Influence of the amplitude of the second interacting harmonic on the W/U
ratio, taking into account the nonlinearity of the vertical acceleration of ice and
E =0, is shown in Fig. 5 for the long-wave range of wave numbers, where there are
no resonant values [11]. Here E=3-10°N/m?, H = 100m, a=1 m, h=1m.
The solid and dashed lines correspond to the cases a; > 0 and a; < 0, respectively.
It can be seen that the change in the ai sign is manifested both in an increase and
decrease of the W/U ratio values. As k increases, the difference between the values
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grows. Note that in the shortwave range the W/U ratio at E # 0 and a1 > 0 is greater
than the W/U ratio at E = 0 and a; > 0, while at E # 0 and a; < 0 it is smaller than at
E=0anda; <0.

Conclusion

Based on the velocity potential of a finite depth fluid, obtained as
an asymptotic expansion to values of the third order of smallness, the velocity of
liquid particles under floating elastic ice is analyzed in the case of nonlinear
interaction of wave harmonics. Influence of the ice cover thickness and elasticity
module, the nonlinearity of the vertical acceleration of ice and the amplitude of
the second interacting harmonic on the components of the orbital velocity of
motion of fluid particles under floating ice is studied. Influence of floating broken
ice on the velocity components is studied, and the case of propagation of a formed
wave of finite amplitude in a basin with a free surface is also considered.

It is shown that the influence of the nonlinearity of the vertical displacements’
acceleration of floating ice on the components of the fluid velocity is manifested in
the phase shift increase. The sign reversal of the second interacting harmonic leads
to a significant transformation of the profiles and a decrease in the phase. This
effect is shown in the case of both short and long waves. Thus, neglecting
the nonlinearity of the vertical acceleration of ice can lead to noticeable errors in
determining the phase shift.

An increase in the value of the Young's modulus leads to an increase in
the phase shift and an insignificant increase in the maximum values of the fluid
velocity components with floating ice in comparison with the case when ice is
absent. The phase also increases with an increase in the elastic ice thickness, and in
the case of broken ice, it decreases.

Ratio of the maximum values of the vertical and horizontal velocity
components in the considered range of wave numbers with an elastic module equal
to zero is less than one. Consequently, during the propagation of a wave formed by
the nonlinear interaction of wave harmonics, the vertical component of the velocity
does not exceed the horizontal one. This is also observed during the propagation of
a periodic wave of finite amplitude. A comparison of the W/U ratio distributions,
obtained with and without the nonlinearity of the vertical acceleration of elastic ice,
indicates its weak influence on the ratio. In this case, the change in the sign of
the amplitude of the second interacting harmonic, both in the absence and in
the presence of ice elasticity, has a noticeable effect.
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