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Abstract 
Purpose. The work is aimed at studying the ice compression influence on the components of fluid 
motion velocity under a floating ice cover in propagation of the wave formed by the nonlinear 
interaction of wave harmonics. 
Methods and Results. Based on the obtained solution of the problem on nonlinear interaction of 
the progressive surface waves in a finite depth basin with floating and longitudinally compressed 
elastic ice, analyzed were the distributions of the components of fluid particles motion velocity along 
the generated wave length depending on the ice characteristics. The impact of thickness, elasticity 
modulus and compressive force of the ice cover, nonlinearity of the ice vertical acceleration and 
the amplitude of the second interacting harmonic upon the vertical and horizontal components of 
the fluid particles motion velocity was studied.  
Conclusions. It is established that the compressive force conditions reduction of the phase and 
the maximum values of the fluid motion velocity components. Change in the sign of the second 
interacting harmonic amplitude is manifested in a significant profile transformation, and affects 
the generated perturbation phase at the regard for the nonlinearity of ice vertical acceleration. When 
the compression force value is fixed, a decrease in the ice cover rigidity results in a noticeable delay 
of the oscillation phase. 
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Introduction 
Waves propagate over considerable distances in the basins both with a free 

surface and with floating ice cover, which affects the dynamics of the sea surface 
and subsurface waters [1–3]. The ongoing climatic processes necessitate reliable 
calculations of wave characteristics and wave forecasts in ice conditions and 
require the development of theoretical studies, mathematical modeling, as well as 
field instrumental measurements and laboratory experiments [4–8]. When solving 
individual problems related to wave dynamics on the surface of a fluid, one should 
take into account the drift flow that occurs during the propagation of surface waves – 
the Stokes drift [9, 10]. Its velocity towards the direction of motion of finite 
amplitude waves was studied in [11–15] in the absence of ice cover. In [16, 17], 
the effect of floating broken ice on the rate of translational movement of a fluid in 
the direction towards the propagation of a progressive nonlinear wave was studied. 
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The study of the displacement velocity of fluid particles along the profile of 
a traveling periodic wave of finite amplitude in a basin with floating elastic ice was 
carried out in [18], and with continuous, longitudinally compressed elastic ice – in 
[19]. 

In this work, based on the obtained solution of the problem of nonlinear 
interaction of progressive surface waves in a basin of finite depth with floating 
longitudinally compressed elastic ice [20], we analyze the distributions of 
the velocity components of fluid particles along the length of the formed wave 
under the floating ice cover. 

 
Problem statement 

Let continuous, longitudinally compressed elastic ice with thickness h = const 
float on the surface of a homogeneous ideal incompressible fluid of constant 
depth H. Liquid and ice cover in horizontal directions are not limited. We are to 
study ice effect on the orbital velocities of liquid particles, which are formed during 
the interaction of two wave harmonics of finite amplitude. We assume that 
the liquid movement is potential, and the oscillations of ice are continuous, then 
the task is to solve the Laplace equation 

 

φ φ 0, , ζxx zz x H z+ = −∞ < < ∞ − ≤ ≤                                    (1) 
 

for the velocity potential with boundary conditions on the ice – liquid surface (z = ζ) 
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and at the bottom (z = –H) of the basin 
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At the initial moment of time (t = 0) 
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The velocity potential and the elevation of ice – liquid surface at z = ζ are related 
by the kinematic condition 
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Problem (1)–(5) is written in dimensionless quantities: 
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Е, Q, h, ρ1, ν are the modulus of normal elasticity, longitudinal compressive force, 
thickness, density, Poisson’s ratio of ice, respectively; ρ is density of fluid; k is 
a wavenumber; g is gravitational acceleration; t is time; φ(x, z, t) is a potential of 
fluid motion velocity; ζ(x, t) is an elevation of ice – fluid surface. 

We note that in the dynamic condition (2), the expression with κ is the inertia of 
the vertical displacements of ice, the first term in parentheses of this expression 
characterizes the nonlinearity of ice vertical acceleration [20]. 

 
Expressions for the components of orbital velocity of fluid particles 

The solution to the problem (1)–(5) was found by the multiscale method [21] 
in the form of equations for three approximations with regard to the nonlinearity of 
vertical displacement acceleration of longitudinally compressed elastic ice [20]. 
The first approximation of the basin surface elevation ζ1 was set as 

 

1 1 0 1 2ζ cosθ cos 2θ, θ τ β( , )a x T T T= + = + + , 
 

where a1 is an amplitude of the second interacting harmonic, and β(Т1, Т2) is 
determined from the second and third approximations. Here T1 = εt; T2 = ε2t; 
ε = ak; а is an amplitude of initial harmonic. The final expression for the velocity 
potential in dimensionless variables, up to the third approximation, was found in 
the following form: 
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In dimensional variables, the expression for the velocity potential has the form 
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and in the expressions for b20, b30, b11, b12, b23, b24, b33, b34, b35, b36, σ1, σ2 
the argument of hyperbolic functions is replaced by kH. Here and below, for 
expressions in dimensional variables, the symbols “x”, “z”, “t” have index 1 
omitted, and “ϕ” – the sign “*”. Consequently, the horizontal (u) and vertical (w) 
components of a homogeneous fluid velocity, taking into account formula (6), are 
determined by the expressions 
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Note that the resulting solution is valid outside small neighborhoods of the resonant 
values of the wavenumbers ki (i = 1…4) [20]. 

 
Analysis of the dependence of fluid velocity components 

on ice cover characteristics 
To assess the effect of ice cover characteristics on the velocity of wave 

currents under the ice, numerical calculations were performed at ρ1/ρ = 0.87; 
ν = 0.34; 0 ≤ h ≤ 2 m; E equal to 0; 5·108; 109; 3·109 N/m2, and the condition 

1 2Q D<  necessary for the stability of the floating ice cover 1 [22]. 
 

  
F i g.  1. Distribution of the fluid motion velocity components under ice compression 1Q D=  (thick 
lines) and in its absence Q1 = 0 (thin lines) for the case when а1 > 0 (a) and а1 < 0 (b) at λ/H = 10.47. 
Dashed lines are obtained with allowance for ice vertical acceleration; solid ones – without it 

 
Fig. 1 gives the distribution of horizontal and vertical velocity components 

under the conditions of ice compression, 1Q D= , and in its absence, Q1 = 0, for 
the case а1 > 0 (Fig. 1, a) and а1 < 0 (Fig. 1, b). Here E = 3·109 N/m2, H = 60 m, 
a = 2 m, h = 2 m, wavelength λ = 628 m. In Fig. 1, a, it can be seen that during 
the propagation of a wave formed during the nonlinear interaction of two 
harmonics, the compressive force effect is manifested in a noticeable decrease in 

1 Kheisin, D.E., 1967. Dynamics of Ice Cover. L.: Gidrometeoizdat, 215 p. (in Russian). 
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the phase and maximum values of the fluid velocity components. Consideration of 
the nonlinearity of ice vertical acceleration manifests itself in the acceleration of 
the generated perturbation displacement compared to the profile constructed without 
taking it into account. This trend remains even in the presence of a compression 
force. The sign change of the amplitude of the second interacting harmonic from 
minus to plus leads to a qualitative and quantitative profile transformation (Fig. 1, b). 
The effect of the compressive force remains, however, the nonlinearity of 
the acceleration of floating ice vertical displacements manifests itself in a decrease in 
the phase of the wave profile. 

 

  
 

F i g.  2. Distribution of fluid motion velocity components under ice compression 1Q D=  (thick 
lines) and in its absence Q1 = 0 (thin lines) for the case when а1 > 0 (a) and а1 < 0 (b) at λ/H = 0.69. 
Dashed lines are obtained with allowance for ice vertical acceleration; solid ones – without it 

 
For the range of short waves (Fig. 2), the ice cover impact in the presence of 

a compressive force is more noticeable, compared to long waves, in the phase shift 
and amplitude values of the fluid velocity components. The profiles of 
the generated perturbations are nonlinear. Here E = 3·109 N/m2, H = 100 m, 
а = 1 m, h = 0.5 m, 1Q D= , λ ≈ 69 m. Note that the values of the vertices on 
the horizontal velocity component profile u(x) for the studied wave disturbances, as 
well as in the case of the interaction of wave harmonics in a basin with an elastic 
ice cover [23], in the linear case and during the propagation of periodic flexural-
gravity waves of finite amplitude [18, 19] correspond to the values w(x) = 0. In this 
case, the values of the vertices on w(x) profile correspond to the values u(x) ≠ 0. 

The compression force effect on the orbital motion velocity components of 
liquid particles with a change in the modulus of elasticity is shown in Fig. 3 at а1 > 0 
(Fig. 3, a) and а1 < 0 (Fig. 3, b). Here H = 100 m, a = 1 m, h = 0.6 m, 1Q D= , E = 
 = 3·109 N/m2 (solid line), E = 109 N/m2 (dashed line), E = 5·108 N/m2 (dashed-
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dotted line). The profiles of velocity components are constructed with allowance for 
the inertia of the vertical ice displacements. It can be seen from the figure that with 
a decrease in the ice cover rigidity, a noticeable delay in the oscillation phase occurs. 
At the same time, its amplitude also decreases. When the sign of the second 
interacting harmonic changes, the profiles of the velocity components are deformed 
qualitatively and quantitatively. The change in the modulus of ice elasticity affects 
the distribution of velocity components in the same way. 

 

  
 

F i g.  3. Distribution of fluid motion velocity components under ice compression 1Q D=  for 
the case when а1 > 0 (a) and а1 < 0 (b). Solid line corresponds to E = 3·109 N/m2, dashed line – to 
E = 109 N/m2, and dash-dotted one – to E = 5·108 N/m2 

 
The distribution of the ratio of maximum values along the wavelength of 

the vertical (W) and horizontal (U) velocity component over the wave number in 
the case of taking into account the nonlinearity of ice vertical acceleration is 
demonstrated in Fig. 4. The range of considered wave numbers is located outside 
the resonant values [20]. Here H = 60 m, a = 1 m, h = 1 m, E = 3·109 N/m2. It can 
be seen that in the considered range of k, the wave number distribution W/U is less 
than unity; therefore, as in the case of the propagation of a nonlinear periodic wave 
[18, 19], the vertical component does not exceed the horizontal velocity 
component. In contrast to the linear case, the distribution of the W/U ratio within 
the range of small k is not monotonic; here, the manifestation of the compressive 
force and the influence of the sign of the second interacting harmonic amplitude 
are noticeable. Note that, in this range, a decrease in the Young’s modulus affects 
the decrease in the ratio both at Q1 ≠ 0 and at Q1 = 0. As k increases, the sign of 
the amplitude а1 has the greatest effect on W/U. 
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F i g.  4. Distribution of the W/U ratio value over the wave number. Solid lines – 1Q D= ; dashed 
lines – Q1 = 0 and dash-dotted one is a linear case. Lines 1 correspond to the case when а1 > 0, and 
lines 2 – when а1 < 0 
 

 

 
 

F i g.  5. Distribution of the W/U ratio value over the fluid depth at λ = 78.5 m. Thick lines – h = 1 m, 
E = 3·109 N/m2, 1Q D= ; thin ones – h = E = Q1 = 0. Solid lines correspond to the case when а1 > 0, 
dashed lines – when а1 < 0, and dotted ones correspond to the linear case 
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The dependence of the ratio of the maximum wavelength values that make up 
the velocity on the basin depth for a given wavelength λ is given in Fig. 5, with 
allowance for the nonlinearity of ice vertical acceleration. It can be seen that in 
the presence of ice cover, with increasing basin depth, the ratio of the vertical and 
horizontal velocity components (W/Uh≠0) increases and at H > 40 m the ratio 
remains almost constant. The value of W/Uh≠0 depends on the sign of the second 
interacting harmonic and can be either greater than the value of this ratio in 
the linear case, or less than it. In the absence of ice cover, the value W/Uh≠0 ~ const 
at H > 80 m. It can be seen from the presented distributions that, starting from 
H > 40 m, W/Uh≠0 < W/Uh=0 < 1, i.e. the vertical component does not exceed 
horizontal one, and the presence of a continuous longitudinally compressed elastic 
ice cover reduces the value of the ratio compared with the case of no ice. Note that 
with an increase in the initial harmonic amplitude, for а1 > 0, the W/U ratio 
increases, and for а1 < 0, it decreases. With a decrease in the elastic modulus at 
Q1 = 0, the ratio slightly increases both at а1 > 0 and at а1 < 0. Moreover, at а1 < 0, 
it is more noticeable. The compressive force effect on the W/U ratio depends on 
the value of normal elasticity modulus, for example, at H > 40 m, Q1 = const and 
decreasing E, the W/U ratio increases. 

 

 
 

F i g.  6. Distribution of the W/U ratio value over the fluid depth at λ = 78.5 m. Thick lines – h = 1 m, 
E = 3·109 N/m2, 1Q D= ; thin ones – h = 1 m, E = Q1 = 0. Solid lines correspond to the case when 
а1 > 0, dashed lines – when а1 < 0, and dotted ones correspond to the linear case 

 
Distribution of W/U dependence over depth H at λ = 78.5 m for the case of 

absolutely flexible ice (h ≠ 0, E = Q1 = 0) and the case of elastic longitudinally 
compressed ice (h ≠ 0, E ≠ 0, Q1 ≠ 0) is demonstrated in Fig. 6 when taking into 
account nonlinearity of the acceleration of its vertical displacements. Thick lines, as 
in Fig. 5 correspond to the case of an elastic longitudinally compressed ice cover 
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(h = 1 m, E = 3·109 N/m2, 1Q D= , a = 1 m). Thin lines are the case of absolutely 
flexible ice (broken ice), here h = 1 m, E = Q1 = 0, а = 1 m. Solid lines – а1 > 0, 
dashed lines – а1 < 0, dotted lines – linear case. It can be seen that, starting from 
H > 30 m, the W/U distributions for the case of broken ice (W/UE=0) ~ const and are 
inside the distribution for elastic, longitudinally compressed ice (

1 0QW U ≠ ) ~ const, 
this is also preserved in the case of elastic ice (Q1 = 0). For the case when а1 > 0, 

10 0E QW U W U= ≠< , and for the linear case and the case when а1 < 0, 

1 0 0Q EW U W U≠ =< . Note that the effect of taking into account the nonlinearity of 
the ice vertical acceleration on the W/U ratio with increasing basin depth is most 
noticeable in the case of absolutely flexible ice. At а1 > 0, the value of the W/U ratio 
decreases, and at а1 < 0 it increases, and the effect of ice acceleration nonlinearity is 
more noticeable at а1 < 0. 

 
Conclusion 

Based on the obtained solution of the problem of progressive surface wave 
nonlinear interaction in a basin of finite depth with floating longitudinally 
compressed elastic ice, an analysis of the distributions of velocity components of 
fluid particle motion along the length of the formed wave under the floating ice 
cover was carried out. The effect of the thickness, elastic modulus and compressive 
force of the ice cover, with allowance for nonlinearity of ice vertical acceleration, 
the amplitude of the second interacting harmonic on the vertical and horizontal 
components of the liquid particle velocity is studied. 

It is found that the compressive force causes a decrease in the phase and 
the maximum values of the fluid velocity components. The change in the sign of 
the amplitude of the second interacting harmonic manifests itself in a significant 
transformation of the profile and affects the phase of generated perturbation when 
nonlinearity of the ice vertical acceleration is taken into account. At a fixed value 
of the compression force, a decrease in the ice cover rigidity leads to a noticeable 
delay in the oscillation phase. 

The distribution of maximum values ratio of the vertical and horizontal 
velocity components along the wavelength over the wave number within the range 
of small wave numbers is not monotonous – manifestation of compressive force 
and the influence of the sign of the second interacting harmonic amplitude are 
noticeable in comparison with the linear case. For a given wavelength, there is 
a difference in the ratio values for the cases of an open surface, broken ice, and 
continuous, longitudinally compressed elastic ice. There is a depth value, starting 
from which, for all considered cases, the ratios of the vertical and horizontal 
velocity components remain practically constant and less than unity. 
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