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Abstract 
Purpose. The purpose of the work is to assess the impact of the characteristics of modern conventional 
microelectromechanical inertial motion units on the errors in measuring the energy characteristics of 
surface waves by wave buoys. 
Methods and Results. Several methods are considered for estimating the wave energy spectrum based 
on inertial measurements, including accelerometer/gyroscope/magnetometer data. Four algorithms for 
reconstructing vertical acceleration were analyzed for further assessment of the spectrum of sea surface 
elevations. Based on the data obtained in a field experiment from the MHI Stationary Oceanographic 
Platform, differences in estimates of wave heights using one or another algorithm are shown. 
The performed numerical experiment qualitatively reproduces the features of inertial measurements 
and their respective spectra observed in field conditions. 
Conclusions. It has been shown that the accelerometer noise level of typical sensors is 3–4 orders of 
magnitude lower than the signal from surface waves, and the accuracy characteristics of such sensors 
provide measurement of wave heights with an error not exceeding the specification values, which is 
usually no more than 3%. The noise below the spectral peak frequency can be a serious problem in 
wave height estimation, as it hinders the reliable isolation of the spectral peak. A sufficient condition 
for the occurrence of such noise is nonlinearity in the “sea surface-sensor” system. The strongest low 
frequency noise is observed when using an algorithm based on the Kalman filter. Thus, for minimizing 
wave height measurement errors, the choice of an inertial data processing algorithm seems to be more 
significant than the choice of a specific sensor model. 
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Introduction 
Wave buoys represent a prevalent means for in situ measuring sea surface wave 

characteristics in both the world’s oceans [1, 2] and the Russian seas 1 [3, 4]. 
The operational principle of wave buoys is based on tracking the motion of a floating 
body assumed to perfectly follow the sea surface [5]. The measurement of motion 
can be achieved through various methods, all of which are generally based on two 

1 Saprykina, Y., Kuznetsov, S. and Divinskiy, B., 2020. Real Time History of Wave Parameters in 
Black Sea Based on Wave Buoy Measurements. Dataset. 
https://doi.org/10.6084/M9.FIGSHARE.12765407.V1 
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primary types of measurements: inertial measurements (typically include 
measurements of the geomagnetic field) 2 [5, 6] and global navigation satellite 
system (GNSS) measurements [7–9]. This paper focuses on the first type of 
measurements due to the progress in microelectromechanical systems (MEMS) over 
the past few decades. The development of MEMS has led to the widespread 
availability of inertial motion units (IMUs), which have become increasingly 
attractive due to their low cost, lightweight, compact size, energy efficiency, and 
immunity to radio interference when compared to analogous GNSS-based sensors.  

In the early versions of wave buoys, the IMU measured linear acceleration along 
the vertical direction [10]. To stabilize the vertical axis, mechanically damped 
gimbals were used, thereby providing a direct estimate of the vertical accelerations 
of the hull. Consequently, this approach resulted in a non-directional elevation 
spectrum, significant wave height (SWH), and the period of dominant waves [1, 11]. 
When combined with magnetic sensors, such systems are capable of tracking the hull 
tilt with reference to the magnetic north, enabling the estimation of directional wave 
spectra.  

With the development of MEMS technologies, the use of inertial sensors rigidly 
attached to the hull, often referred to as strapped-down IMUs, has become more 
suitable for wave measurements [12, 13]. The lack of mechanical stabilization is 
compensated by the simultaneous measurement of three components: acceleration 
(accelerometer), rotation rate (gyroscope), and geomagnetic field (magnetometer).  

In theory, given the initial conditions are known, these measurements are 
sufficient to unambiguously determine the position and orientation of the hull, which 
is necessary to calculate the wave parameters. However, the presence of noise makes 
the estimation of the hull orientation unreliable due to the accumulation of errors 
over time. It should be noted that this is a standard navigation problem, the solution 
of which is especially important for unmanned aircraft technology, robotics, 
entertainment industry, etc.   

The early strapped-down navigation systems used an approach based on 
the ability to estimate orientation using two reference vectors [14, 15], such as 
the gravity vector and the geomagnetic field. This deterministic approach was called 
the TRIAD method, since the rotation matrix determining the orientation of a body 
in a fixed reference frame is a combination of three vectors, two reference vectors 
and their cross product. The main drawback of the TRIAD method is the errors 
associated with the distortion of the gravity vector by inertial forces arising due to 
the accelerated motion of the moving reference frame. 

Today, the traditional solution for wave buoys is a recursive Kalman filter [16–
18], aimed at assimilating all possible types of measurements to estimate the true 
orientation of the sensor, its acceleration, velocity, and position in a fixed reference 
frame [6, 18–27]. 

The Kalman filtering provides a weighted estimate of the current state of 
a dynamic system based on the previous state history and current measurements, 
the process also known as “data fusion”. The choice of weighting factors depends on 
the estimated measurement errors. This approach is useful when a series of generally 
“precise” measurements is interrupted by “erroneous” readings. In the case of 
inertial measurements, the “precise” measurements can be obtained for uniform 

2 Barber, N.F., 1946. Measurement of Sea Conditions by the Motion of a Floating Buoy. Admiralty 
Research Laboratory, Tech. Note A.R.L./103.40/N.2/w., 8 p. 
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rectilinear (non-accelerated) motion. The “erroneous” measurements occur during 
accelerated motion of the sensor, when the measured gravity vector is distorted by 
additional inertial forces. A typical example of such a system is a vehicle that 
generally moves uniformly but experiences interruptions due to accelerations/stops 
and course changes. When measuring waves, the gravity vector is always distorted 
by inertial forces, since the buoy continuously follows the orbital motion of 
the surface waves. Therefore, the efficiency of using standard IMU data assimilation 
algorithms for wave measurement seems unclear.  

This paper analyzes the errors that can potentially occur in wave measurements 
using conventional commercially available IMUs. This issue is important because 
the possibility of using simple and cheap sensors in wave buoys allows to create 
expendable buoy fleets for specialized scientific experiments that are unrealistic with 
traditional buoys due to their much higher cost [28]. On the other hand, the use of 
small sensors allows a significant miniaturization of the buoy hulls, thus extending 
their bandwidth to shorter waves, which are important for several geophysical 
applications.   

This study considers the noise characteristics of typical IMUs. Various methods 
for estimating buoy motion are analyzed, including a standard algorithm using 
the Kalman filter, as well as earlier methods based on the TRIAD method. 
The differences in the algorithm performance are demonstrated using the field data 
obtained from a wave buoy prototype. To illustrate the characteristics of 
the algorithms, a numerical simulation of an idealized buoy motion (the buoy that 
perfectly follows the waves) is performed. For the sake of brevity, we focus only on 
the retrieval of omnidirectional spectra and their two basic integral parameters, SWH 
and peak frequency, leaving the discussion of directional wave properties to other 
studies. 

Materials and methods 
General considerations. Let us consider a free-floating body perfectly 

following the local slope of the sea surface. The height of the wave ζ is given by 
a plane sinusoidal wave ζ(𝑡𝑡, 𝑥𝑥) = 𝐴𝐴sin(Ω𝑡𝑡 + 𝐾𝐾𝑥𝑥), where A is the wave amplitude, 
Ω = 2π𝐹𝐹 is the radial frequency of the wave, F is the wave frequency, K is the wave 
number, x is the spatial coordinate, t is the time (Fig. 1). Usually, the most interesting 
wave parameter is the amplitude A, which cannot be obtained directly from 
the measurement of acceleration, rotation rate or magnetic field (combined 
accelerometer/gyroscope/magnetometer).  

In the moving sensor reference frame x'y'z', the deviation of the measured 
magnetic field vector from the x'-axis can be interpreted as the local slope of the sea 
surface ξ = 𝜕𝜕 ζ 𝜕𝜕⁄ 𝑥𝑥. The gyroscope readings corresponding to the rate of rotation 
around the y'-axis represent the rate of the slope change, η = 𝜕𝜕2 ζ 𝜕𝜕⁄ 𝑥𝑥 𝜕𝜕𝑡𝑡. 
The acceleration along the moving z'-axis is equal to the vertical acceleration in 
the fixed reference frame modified by the acceleration due to gravity, 𝑔𝑔 = 9.8 m/s2.  

Therefore, 
𝑔𝑔′ = 𝜕𝜕2 ζ 𝜕𝜕⁄ 𝑡𝑡2 + 𝑔𝑔,  (1)

since the vector measured by the accelerometer is always normal to the surface. 
Indeed, the vector change of a stationary accelerometer reading, 𝑔𝑔 ⋅ 𝑒𝑒𝑧𝑧� , is equal to 
the centrifugal acceleration of the sensor, 𝐴𝐴Ω2(sinθ ⋅ 𝑒𝑒𝑥𝑥� + cosθ ⋅ 𝑒𝑒𝑧𝑧� ), where θ is 
the wave phase, and 𝑒𝑒𝑥𝑥�, 𝑒𝑒𝑦𝑦�, 𝑒𝑒𝑧𝑧�  are the unit vectors of the fixed reference frame. 
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Obviously, the maximum tangent of the angle between the measured acceleration 
and the gravity vector is 𝐴𝐴Ω2 𝑔𝑔⁄ , which is exactly equal to the magnitude of 
the surface slope AK, if the deep-water linear dispersion relation, Ω2 = 𝑔𝑔𝐾𝐾, is 
accepted. Thus, for linear waves, the acceleration measured in the moving reference 
frame is always directed along the z'-axis, and its variations are equal to the vertical 
acceleration of the fluid particles in the wave, as noted, for example, in [29]. 

F i g.  1. Sketch explaining the accepted notation and the principle of inertial measurement of waves in 
the x'y'z' frame moving with liquid particles: general view (a), side view along the x-axis (b). The wave 
propagates in the positive direction of the x-axis of the right fixed reference frame 

Therefore, an estimate of the wave height can be obtained by double integration 
of the measured accelerations, or, equivalently, in the spectral domain, by relating 
the spectra of the heights and accelerations. Therefore, 

𝑆𝑆𝑧𝑧(ω) = ω−4𝑆𝑆𝑎𝑎(ω), (2) 

where 𝑆𝑆𝑧𝑧 is the elevation spectrum, 𝑆𝑆𝑎𝑎 is the acceleration spectrum, ω = 2π𝑓𝑓 is 
the radial frequency representing the Fourier frequency domain (not the single 
harmonic Ω). Similar estimates can also be written for slope spectra (or magnetic 
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measurements) 𝑆𝑆ξ and rotation rate spectra (or gyroscope measurements) 𝑆𝑆η, taking 
into account the linear dispersion relation: 

𝑆𝑆𝑧𝑧(ω) = 𝑔𝑔2ω−4𝑆𝑆ξ(ω), 

𝑆𝑆𝑧𝑧(ω) = 𝑔𝑔2ω−6𝑆𝑆η(ω). (3) 

All three estimates have a singularity, 𝑆𝑆𝑧𝑧 → ∞ for ω → 0, which distorts 
the integral estimates such as SWH, 𝐻𝐻𝑠𝑠 = 4�∫𝑆𝑆𝑧𝑧 (ω)𝑑𝑑ω. To avoid uncertainty, 
the low-frequency oscillations are usually suppressed by a high-pass filter. 
The characteristic frequency of this filter must be explicitly specified, e.g., 
empirically based on the typical or minimum possible frequency observed in a given 
water body, or can be a tuning parameter of the filter that separates signal from noise 
[13, 30–32].  

Equipment. In this work, conventional commercial off-the-shelf IMUs were 
used. Table lists some parameters of the most accessible models on the market, 
including Russian devices. Based on the chip package size and typical parameters of 
the measured waves, the applicability of these modules for wave measurements can 
be assessed.  

Unlike acceleration, the rotation rate measured by a gyroscope depends not only 
on the steepness of the wave, but also on its frequency, η = (𝐴𝐴𝐾𝐾)Ω. The maximum 
recorded frequency, which has a practical meaning, is determined by the geometry 
of the buoy hull, i.e., the frequencies of the resonant oscillations and the cut-off 
frequency of the hull. For example, for the Datawell [34] and Spotter [22] buoys, 
both 40 cm in diameter, this frequency is set to 0.6 Hz and 1 Hz, respectively. These 
frequencies correspond to ~ 120 and ~ 200 º/s rotation rates, falling within the first 
two ranges that can be selected with most sensors.  

Magnetometer measurements in wave sensing applications are usually limited 
to recording the geomagnetic field with typical values of (25...65) µT, which is 
a standard task for most sensors. 

Thus, the measurement ranges of the simplest (cheapest) sensors provide 
the means to confidently use them for wave measurements. It should also be noted 
that the bandwidths of the accelerometer and gyroscope are in the order of tens to 
hundreds of Hz (nominally for vibration measurements). This is particularly 
important for shortest wave measurements [29] and wind speed estimates [35]. 
The nonlinearity and calibration coefficient errors are typically less than 1%, a very 
good relative error for in situ wave height measurements. Many IMUs (e.g. BNO-
055 and MG-10 in Table) are equipped with a built-in algorithm for processing 
inertial measurements. However, such algorithms are usually not documented, and 
the only tuning parameter available to the user is the sensor sampling frequency. 
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In particular, the magnitude of the liquid particle wave acceleration, 𝑎𝑎 = 𝐴𝐴Ω2 =
= (𝐴𝐴𝐾𝐾)𝑔𝑔, is usually smaller than the acceleration of gravity, because waves break 
when (𝐴𝐴𝐾𝐾) > 0.44 … 0.55 [33]. Therefore, it is optimal to select the acceleration 
measurement range within (1 … 2)𝑔𝑔, both for the most efficient use of the analog-
to-digital converter dynamic range and for possible wave breaking moments filtering 
and/or analysis.  



Therefore, it is preferable to implement a specialized data processing algorithm that 
takes into account the characteristics inherent in sea wave motion. 

Characteristics of some commercial IMUs 

Parameters MPU-9250 
(Invensense) 

3 
BNO-055 
(Bosch) 4 

ADXL345 
(Analog 

Devices) 5 

ММА8452 
(NXP Semi-
conductors) 

6

MA-10 
(Laboratoria 

Micropriborov) 7 

MG-10 
(Laboratoria 

Micropriborov) 8 

Accelerometer 

Range, g ±2, 
±4, 
±8, 
±16 

±2, 
±4, 
±8, 
±16 

±2, 
±4, 
±8, 
±16 

±2, 
±4, 
±8 

±50 * ±10 

Bandwidth, Hz < 260 < 1000 < 1600 0 < 400 45 < 500 

Spectral noise 
density, 
μ𝑔𝑔/Hz1/2 

300 150 290–430 99–126 300 75 

Nonlinearity, % 0.5 0.5 0.5 – 0.1 0.1 

Gyroscope 

Range, º/sec ±250, 
±500, 

±1000, 
±2000 

±125, 
±250, 
±500, 
±1000, 
±2000 

– – – ±75, 
±150, 
±300 

Bandwidth, Hz < 250 < 523 – – – <160 

Spectral noise 
density, º/Hz1/2 

0.01 0.014 – – – 0.02 

Nonlinearity, 
% 

0.1 0.05 – – – 0.1 

Magnetometer 

Range, μT ±4800 ±1300, 
±2500 

– – – ±800 

Bandwidth, Hz 4 10 – – – – 

* The range can be adjusted upon request.

3 Invensense. MPU-9250. Product Specification. 2014. [online] Available at: 
https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf [Accessed: 30 
January 2025]. 

4 BOSCH. BNO055. Intelligent 9-Axis Absolute Orientation Sensor. Data Sheet. 2014. [online] 
Available at: https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf [Accessed: 30 January 
2025]. 

5 Analog Devices. ADXL345. Data Sheet. 2022. [online] Available at: 
https://www.analog.com/media/en/technical-documentation/data-sheets/adxl345.pdf [Accessed: 30 January 
2025]. 

6 NXP Semiconductors. MMA8452Q. Data Sheet: Technical Data. 2016. [online] Available at: 
http://www.nxp.com/docs/en/data-sheet/MMA8452Q.pdf  [Accessed: 30 January 2025].  

7 Laboratoria Mikropriborov. MEMS-accelerometer МА-10. Brief Information. 2022. [online] 
Available at:  https://mp-lab.ru/wp-content/uploads/2022/10/Brif-MA-10-3.pdf [Accessed: 30 January 2025] 
(in Russian). 

8 Laboratoria Mikropriborov. MG-10 Inertial Module. Brief Information.  2022. [online] Available at:  
https://mp-lab.ru/wp-content/uploads/2022/08/Brif-MG-10.pdf [Accessed: 30 January 2025] (in Russian). 
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A critical parameter for wave measuring is the intrinsic noise of the sensors. 
In fact, according to (2–4), spectral estimates at low-frequencies are artificially 
“amplified” by multiplying the spectrum by a rather high negative frequency power 
(−4 or −6) – in the spectral domain – or by integrating it twice or thrice – in the time 
domain. Obviously, the presence of broadband inherent noise can lead to critical 
errors in the estimation of wave parameters, as will be discussed below.  

In general, the sensors listed in Table have noise characteristics that 
are similar in magnitude. The MPU-9250 sensor, which combines an 
accelerometer/gyroscope/magnetometer, was chosen as a sample for more detailed 
testing. On the one hand, this is the most affordable model on the Russian market at 
the time of the study. On the other hand, a sensor of this model was already available 
to us as part of a wave buoy prototype that has been operating episodically for five 
years [20, 29]. This helps to evaluate the effects of MEMS aging for this model. 
In addition to this sample, five similar IMUs from different production series were 
used in the tests.  

The intrinsic noise characteristics were evaluated in static mode (the sensor is 
stationary) at various ambient temperatures ranging from −10 to 50 ºС. 

IMU data processing. The sea surface elevation spectra were calculated from 
the vertical accelerations according to the formula (2). Vertical accelerations in 
the fixed reference frame can be estimated from inertial data in different ways. Four 
algorithms based on different approaches are considered.  

Algorithm А1. It is assumed that the vertical acceleration variations of 
the sensor in the fixed reference frame coincide with the vertical acceleration 
variations measured in the moving reference frame according to the formula (1). This 
assumption is valid for the buoy perfectly following the wave slopes, which must be 
small (no resonance oscillations of the buoy, waves are linear).  

Algorithm А2/А3. The vertical accelerations of liquid particles can also be 
obtained by knowing the instantaneous orientation of the moving reference frame. 
The orientation of one reference frame relative to another can be uniquely 
determined if the coordinates of two non-collinear vectors in each of these systems 
are known. Based on this statement, the so-called TRIAD method was developed 
[14, 15]. If �⃗�𝑝 and �⃗�𝑞 are the vector pair in the xyz reference frame, while �⃗�𝑝′ and 
�⃗�𝑞′ are 𝑡𝑡ℎ𝑒𝑒 corresponding vector pair in the x'y'z' reference frame, then the rotation 
matrix between xyz and x'y'z' can be written as 𝑅𝑅 = [𝑟𝑟1���⃗  𝑟𝑟2���⃗  𝑟𝑟3���⃗ ] ⋅ [𝑠𝑠1���⃗  𝑠𝑠2���⃗  𝑠𝑠3���⃗ ]𝑇𝑇 , where 
[𝑟𝑟1���⃗  𝑟𝑟2���⃗  𝑟𝑟3���⃗ ] and [𝑠𝑠1���⃗  𝑠𝑠2���⃗  𝑠𝑠3���⃗ ] are the matrices obtained by the horizontal concatenation of 
the following vector triads: 𝑟𝑟1���⃗ = �⃗�𝑝′, 𝑟𝑟2���⃗ = �⃗�𝑝′ × �⃗�𝑞′,  𝑟𝑟3���⃗ = 𝑟𝑟1���⃗ × 𝑟𝑟2���⃗  , and 𝑠𝑠1���⃗ = �⃗�𝑝,   𝑠𝑠2���⃗ =
= �⃗�𝑝 × �⃗�𝑞,  𝑠𝑠3�����⃗ = 𝑠𝑠1���⃗ × 𝑠𝑠2���⃗ . 

For standard inertial measurements, only two vectors can be used as a reference: 
the acceleration of gravity, �⃗�𝑔, and the geomagnetic field, 𝑚𝑚��⃗ . The TRIAD method 
provides an exact solution only in the case of uniform rectilinear motion. In the case 
of accelerated motion, i.e., wave orbital motion, the measured acceleration does not 
coincide with the gravity force in the moving reference frame. Therefore, 
the TRIAD method requires the sensor accelerations to be much smaller than 
the acceleration of gravity, 𝑎𝑎 ≪ 𝑔𝑔 , or (𝐴𝐴𝐾𝐾) ≪ 1, the same condition as for the A1 
algorithm. However, unlike А1, the resonant buoy oscillations can be accounted for. 
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The TRIAD transform is invariant with respect to the permutation of �⃗�𝑝 and �⃗�𝑞 
only if the angle between them is constant. Otherwise, if ∠(�⃗�𝑝, �⃗�𝑞) − ∠(�⃗�𝑝′, �⃗�𝑞′) = ε, 
the estimated rotation transform R exactly matches only �⃗�𝑝 and �⃗�𝑝′, but not �⃗�𝑞 and �⃗�𝑞′, 
i.e., ∠(�⃗�𝑝, �⃗�𝑝′ ⋅ 𝑅𝑅) = 0 and ∠(�⃗�𝑞, �⃗�𝑞′ ⋅ 𝑅𝑅) = ε. Thus, for accelerated (wave) motion,
the order of the reference vectors is important: �⃗�𝑝 = �⃗�𝑔, �⃗�𝑞 = 𝑚𝑚��⃗  or �⃗�𝑝 = 𝑚𝑚��⃗ , �⃗�𝑞 = �⃗�𝑔. 
Depending on this choice, the priority vector, �⃗�𝑝, will be either the acceleration vector 
or the magnetic field vector. In our notations, the A2 algorithm corresponds to 
�⃗�𝑝 = 𝑔𝑔 ���⃗ (gravity priority), while the A3 algorithm corresponds to �⃗�𝑝 = 𝑚𝑚��⃗  (magnetic 
field priority). 

Algorithm А4 is based on the Kalman filter, which assimilates all three types of 
inertial data [16, 17]. We use the open-source implementation of this algorithm, 
which is documented in (https://github.com/memsindustrygroup/Open-Source-
Sensor-Fusion). Unlike the А2/А3 algorithms, which provide the orientation 
directly, the Kalman filter recursively assimilates the estimation errors of 
the acceleration, rotation rates and magnetic field, and improves the current estimate 
of the orientation based on the error model. Note that such a filtering is used in 
the most advanced IMU-based wave buoys [18, 21, 24, 25, 36]. 

Field data were obtained in an experiment from the Stationary Oceanographic 
Platform of Marine Hydrophysical Institute using a wave buoy prototype (float 
diameter is 15 cm) built on the basis of the MPU-9250 sensor [29]. Simultaneously 
with the buoy measurements, vertical elevations of the sea surface were recorded by 
a six-channel resistive wave gauge at a distance of 100–150 m from the buoy [37, 
38]. The accuracy of the wave gauge measurement is 1 cm in the 0.1–5 Hz frequency 
band (sampling frequency is 10 Hz).  

Two time series of 30 min each, obtained under different wind and wave 
conditions, are used. The first case corresponds to a developing sea: wind speed was 
13.1 m/s; SWH was 0.7 m; the spectrum measured by the wave gauge had a peak at 
0.25 Hz (inverse wave age is 2.1). In the second case, a mixed sea was observed: 
wind speed was 5.2 m/s; SWH was 0.2 m; the spectrum had two peaks, one 
corresponding to the wind waves at a frequency of 0.5 Hz and the second swell peak 
at a frequency of 0.15–0.2 Hz.  

Results and discussion 
Sensor static noise. The noise characteristics for the selected IMU samples are 

shown in Fig. 2. The standard deviation (STD) of the accelerometer static noise 
signals depends almost linearly on the sensor temperature, with the z-component 
noise being 1.5–2 times higher than the x- and y-component noise. At the same time, 
even the maximum observed value of ~ 2 mg is approximately 4 times lower than 
the STD value of 8 mg declared in the sensor specification. A similar trend is 
observed for the spectral noise density measured at a sensor temperature of 
(20 ± 2) °C (Fig. 2, b). At frequencies above 0.1 Hz, the noise spectrum level for 
the z-component is higher, but not higher than the specification value (shown by 
the dotted line). 
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At frequencies below 0.1 Hz, the noise spectrum becomes higher than 
the specification level and has a 1/f slope indicating its non-thermal nature (flicker 
noise [39]). Sample #0, used periodically for five years (curves #01 and #02), shows 
an increase in spectral noise density by a factor of ~ 1.3, but this value does not 
exceed the specification values.  

The similar behavior, a good agreement with the specification levels, is also 
observed for the noise of the gyroscope and magnetometer channels, which are not 
shown in the figures for brevity. Instead, Fig. 2, c shows the equivalent elevation 
spectra estimated from (2–4) for all three types of inertial measurements. As can be 
seen from the Figure, the most noise is expected in the spectra obtained from 
the magnetometer channel (blue lines). With the same 𝑓𝑓−4 slope, these spectra are 
~ 1–1.5 orders of magnitude higher than the corresponding noise spectra estimated 
from accelerometer measurements (purple lines). The noise spectra estimated from 
rotation rates (yellow lines), in accordance with the formula (3), have a 𝑓𝑓−6 slope, 
resulting in a much higher spectral noise density at frequencies below 0.1 Hz. Note, 
however, that the expected elevation spectra for the real sea surface (the Toba 
spectrum [40] at 3–20 m/s wind speed shown for reference in Fig. 2, c by dashed 
lines) are 4–5 orders of magnitude higher than any equivalent noise spectra. Thus, 
the intrinsic noise of the sensors can be neglected when estimating the real wind 
wave elevation spectra.  

PHYSICAL OCEANOGRAPHY   VOL. 32   ISS. 1   (2025) 71 

F i g.  2. Measured intrinsic noise of accelerometer channels for the MPU-9250 inertial motion unit: 
the acceleration standard deviation versus temperature (a), acceleration noise spectrum (b), equivalent 
elevation spectra estimated from accelerometer, gyroscope, and magnetometer data (c); heat map of 
fitting coefficients for the curves shown in panel a (A – in [μg/°C], B – in [mg]) (d); heat map of fitting 
coefficients for the curves shown in panel b (A – in [(μg)2 · 10−3], B – in [(μg)2/Hz · 10−4]) (e) 



Field measurements. To estimate the elevation spectra from in situ data, 
the А1–А4 algorithms were applied to the raw accelerometer/gyroscope/ 
/magnetometer records. An example of such processing for typical conditions 
(developing sea, wind speed is 13.1 m/s) is shown in Fig. 3, which demonstrates 
a fragment of the vertical acceleration record in a moving reference frame (A1) in 
comparison with the results of processing by the TRIAD method (A2/A3) and 
the Kalman filter (A4).  

F i g.  3. Vertical acceleration time series (a) and vertical displacement after 5 s high-pass filtering (b) 
estimated using algorithms A1–A4. The subpanels show the wave breaking events at 449 s and 479 s 
in more detail 

In general, the corrections introduced by the A2–A4 algorithms are not large, 
indicating the smallness of the slopes. The exception is the case of sharp spikes 
associated with wave breaking. In Fig. 3, a fragment with three such events (at 448 s, 
470 s, 478 s) occurring within 30 s was deliberately selected. The TRIAD method 
(A2/A3) smooths such spikes, whereas the use of the Kalman filter (A4) can lead to 
an increase of the burst (events at 470 s, 478 s). We also note the presence of a certain 
relaxation time for the A4 algorithm, which is required to readjust the Kalman filter 
after a sharp jump in all measured parameters (interval 450–470 s).  

The sea surface elevations obtained by integrating the accelerations are shown 
in Fig. 3, b. The low-frequency components of the accelerations introduce 
unacceptable errors into this signal, so for this Figure the original series are high-
pass filtered with a time constant equal to the period of the peak waves, 5 s. During 
the event at 449 s, the height difference according to algorithm A1 is unrealistically 
large, more than 3 m, while the SWH is about 0.7 m. The reason is obviously 
the penetration of horizontal accelerations into the vertical acceleration signal due to 
the fact that the hull orientation is not taken into account by the A1 algorithm. 
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The corrections introduced by the A2–A4 algorithms allow the smoothing of such 
spikes, as can be seen in Fig. 3, b 

Figure 4 a, c shows the elevation spectra calculated from 30-min records under 
developing and mixed sea conditions, with the initial time series divided into 
successive 1-min intervals and further averaging over them. These estimates are 
based on vertical accelerations obtained using the A1–A4 algorithms (colored lines). 
The elevation spectra measured by the wave gauge (black lines) are given as 
a reference. In the operating frequency range (0.2–1 Hz), all spectral estimates agree 
within the confidence intervals, as well as with the empirical level of the Toba 
spectrum [40], regardless of the choice of the processing algorithm. At frequencies 
above 1 Hz, the possible deviations are related to the transfer function of the buoy 
hull and to Doppler distortions of the reference wave gauge spectra [41].  

The main differences between the algorithms are observed at frequencies below 
the peak frequency fp. For the case of the developing sea (Fig. 4, a), the contrast of 
the spectral peak to the low frequency noise background is ~ 7 for the moving frame 
vertical accelerations (A1), ~ 16 for the TRIAD method (A2/A3), and ~ 1.5 for 
the Kalman filter (A4). Hereinafter, the “low-frequency” corresponds to 
the oscillations with frequencies below the peak frequency, 0 < f < fp. In the case of 
the mixed sea (Fig. 4, c), a similar tendency remains, but the contrast is several times 
smaller, about 2–4. 

The low frequency noise is critically important when estimating the SWH. 
The elevation spectrum decreases rather rapidly with frequency (𝑓𝑓−4), so that 
the main contribution to the SWH comes from the longest waves, which, as follows 
from the results presented, are measured quite well up to the spectral peak. However, 
the presence of low frequency noise below the peak requires the correct choice of 
the lower integration limit when estimating the SWH. This statement is illustrated in 
Figure 4 b, d, which shows the cumulative values of SWH depending on the lower 
integration limit (plotted along the horizontal frequency axis): 

𝐻𝐻𝑠𝑠(𝑓𝑓) = 4�∫𝑆𝑆 (𝑓𝑓′)𝑑𝑑𝑓𝑓′. 

For instance, if the lower limit is 0, then the SWH (left axis in Fig. 4 b, d) and 
its relative error 1 − 𝐻𝐻𝑠𝑠 �𝑓𝑓𝑝𝑝� 𝐻𝐻𝑠𝑠⁄  (right axis in the same plot) tend to infinity (the 
colored lines bend upwards at 𝑓𝑓 → 0), see (2). 

If the lower limit is equal to the frequency of the first inflection of the spectrum 
to the left of the spectral peak (shown by vertical dashed dotted lines), the relative 
measurement error will not exceed 2% for A2/A3 algorithms and 10% for A1, A4 
algorithms. However, this method of searching for the lower integration boundary 
has its limitations, since a swell signal can also be observed below fp. For example, 
if the wind peak in the situation shown in Fig. 4, c was higher than the swell peak. 

An alternative signal/noise boundary can be a frequency identified by the first 
(from the 𝑓𝑓 = 0 side) minimum in the spectrum. These points for all four algorithms 
are shown as encircled crosses in Fig. 4. In the case of such an automated search, 
the relative SWH error also lies within 10%. However, this method is not always 
efficient, since the first local minimum can be at a significantly lower frequency due 
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to the random nature of the wave signal, while the errors become unacceptable at 
𝑓𝑓 → 0 due to the 𝑓𝑓−4-slope of the spectrum. 

The issue of filtering low-frequency noise is traditional for buoy data 
processing. For example, it has been proposed to use a priori information about 
the shape of the spectrum [30, 42], the ratio of the amplitudes of vertical and 
horizontal motions [10], and various empirical corrections [11, 13]. However, 
the origin of the low-frequency noise does not seem to be related to the internal 
characteristics of the sensor, because, firstly, the measured intrinsic noise is 3–4 
orders weaker, as follows from the comparison of Fig. 4 and Fig. 2, and, secondly, 
it depends significantly on the signal processing method (Fig. 4). Therefore, 
the origin of this noise requires additional discussion. 

F i g.  4. Sea surface elevation spectra (a, c) and significant wave height relative error (b, d) measured 
in the field experiment. The colored lines show the results of the processing by the A1–A4 algorithms, 
the thick black line shows the reference measurements by wire wave gauge. Symbols (+) indicate 
the first local minimum in the spectrum. The vertical dash-dotted line shows the frequency 
corresponding to the inflection point in the spectrum 
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Numerical simulation. The following numerical simulation was performed to 
illustrate the features of the data processing algorithms. The initial unperturbed sea 
surface, defined as a flat uniform grid, is deformed by a superposition of N Gerstner 
waves, 

𝑋𝑋𝑚𝑚 = �Real {𝐴𝐴𝑚𝑚𝑚𝑚}sinθ𝑚𝑚, 

𝑌𝑌𝑚𝑚 = �Real {𝐴𝐴𝑚𝑚𝑚𝑚}cosθ𝑚𝑚, 

𝑍𝑍𝑚𝑚 = � Imag {𝐴𝐴𝑚𝑚𝑚𝑚}, 

𝐴𝐴𝑚𝑚𝑚𝑚 = �2 ⋅ 𝑆𝑆(𝑓𝑓𝑚𝑚) ⋅ Δ 𝑓𝑓 𝑁𝑁⁄ ⋅ exp�𝑖𝑖�𝐾𝐾𝑥𝑥𝑚𝑚 ⋅ 𝑥𝑥𝑚𝑚 + 𝐾𝐾𝑦𝑦𝑚𝑚 ⋅ 𝑦𝑦𝑚𝑚 − 2π𝑓𝑓𝑚𝑚𝑡𝑡 + ϕ𝑚𝑚��, 

where 𝑆𝑆(𝑓𝑓𝑚𝑚) is the Toba spectrum, 𝛥𝛥𝑓𝑓 = 𝑓𝑓𝑁𝑁 − 𝑓𝑓1 is the frequency band in which 
the simulation is performed, the frequency limits are 𝑓𝑓1 = 0.2 Hz, 𝑓𝑓𝑁𝑁 = 4 Hz, ϕ𝑚𝑚 is 
the random phase uniformly distributed within [0,2π], θ𝑚𝑚 is the random wave 
direction normally distributed around zero mean (waves travel along the y-
axis). The complex amplitude, Amn, reproduces the target spectrum  𝑆𝑆(𝑓𝑓𝑚𝑚) for 
which the Toba spectrum is adopted again. The angular width is set to 45º in 
accordance with typical values of this parameter for the real sea surface [43]. 
The grid size is δ𝑥𝑥 = δ𝑦𝑦 = 0.01 m, the time step is δ𝑡𝑡 = 0.1 s, the simulation 
domain is Δ𝑥𝑥 = Δ𝑦𝑦 = 2 m, the simulation duration is Δ𝑡𝑡 = 1800 s, the number 
of harmonics is 𝑁𝑁 = Δ𝑓𝑓 ⋅ Δ𝑡𝑡. The magnetic field is directed along the x- or y-
axis, depending on the simulation run. 

Despite some issues regarding the feasibility of Gerstner waves on the real sea 
surface [44], this approach has become widespread due to the possibility of taking 
into account the nonlinearity of waves [45–47]. In the present study, it is particularly 
convenient because it allows to simulate the motion of liquid particles, and thus 
the motion of a free-floating body “attached” to them, without numerically solving 
the hydrodynamic equations. In particular, it is assumed that a flat round buoy 
(15 cm in diameter, as in the field experiment) equipped with an IMU “lies” on 
the simulated surface without experiencing its own resonant oscillations (the buoy 
thickness is zero). The position of such a virtual buoy is determined at each moment 
by fitting the liquid particles under the buoy with a plane. Based on the known 
positions of the buoy center and its orientations, the inertial sensor measurements are 
simulated, i.e., accelerations, rotation rates, and magnetic field components in 
a moving reference frame. 

With this simulation data set, it is possible to check how adequately the inverse 
problem of estimating wave parameters from inertial measurements is solved by one 
or another algorithm. Figure 5 shows an example of a simulation for a five-second 
interval, corresponding to one period of peak waves. The buoy orientation is shown 
by colored arrows in different scales: the long arrows are the true (estimated) 
orientation, the medium-length arrows show the TRIAD method estimate, the short 
arrows are the Kalman filter estimates (A4). Note that the A1 algorithm does not 
include an orientation estimate. 

As can be seen from this example, all the considered methods provide generally 
reliable orientation in the direction of the x-axis (red unit vectors). This is explained 
by the small variability of the slope in this direction, since the waves in this 
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simulation propagate along the y-axis. Accordingly, the main differences from 
the true values are observed in the yz-plane (blue and green unit vectors). The errors 
of the Kalman filter algorithm (A4) are generally smaller than those of the TRIAD 
method. But for the latter, the choice of the priority vector is crucial. If the magnetic 
field is chosen (in this example it is aligned with the direction of the waves), then 
the orientation retrieval is perfect. If the gravity vector is chosen, then the errors are 
larger than for the Kalman filter.  

F i g.  5. An example showing a numerical simulation of the sea surface during a peak wave period 
for five equally spaced instants: side view – on the top, general view – on the bottom. The colored 
arrows show the orientations of the virtual buoy estimated by algorithms A2–A4, the black line is 
the trajectory of the buoy 

These features are illustrated in more detail in Fig. 6, where the instantaneous 
orientations are shown as Euler angle time series, roll/pitch/azimuth, where roll is 
the slope angle along the y-axis, pitch is the slope angle along the x-axis, and 
azimuth angle is the rotation around the z-axis. In particular, pitch and azimuth are 
reproduced equally poorly by the TRIAD method (the curves A2 and A3 completely 
coincide), while true roll (blue thick line) is reproduced perfectly by the A3 
algorithm (the red curve completely coincides with the blue thick line), contrary to 
the A2 algorithm. Thus, the main disadvantage of the TRIAD method is its 
sensitivity to the direction of the waves relative to the magnetic field vector, as well 
as to the choice of the priority vector (gravity or acceleration). 

As with the Kalman filter, the roll and pitch are reproduced with approximately 
the same accuracy, but with a small delay relative to the true signal. Of critical 
importance to this study is the “stray” noise, which is clearly visible in the azimuth 
signal in Fig. 6. The true value of the azimuth angle is virtually constant, while 
the A4 curve randomly deviates from the mean value within ±10º, and, most 
importantly, with a period exceeding the period of the wave peak. Note also that 
the same low frequency oscillations are present, although less distinguishable, in 
the roll and pitch angles.  For example, the A4 curve (green) is slightly higher than 
the true curve (blue) before ~ 13 s of the simulation, but later it becomes lower. 
At first glance, such a small error < 5º may seem insignificant. However, it can be 
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a strong artifact in the elevation spectra, as shown below in the same way as for 
the field data analysis. 

F i g.  6. Euler angles (roll/pitch/yaw) estimated using algorithms A2–A4 based on model 
calculations 

Three different wave situations with peak frequencies 𝑓𝑓𝑝𝑝 = 0.3, 0.2, 0.1 Hz are 
considered in Fig. 7 (left, middle and right columns, respectively). The wind speed, 
which determines the spectral level in the target Toba spectrum, is chosen to be equal 
to U = 5.2, 7.8, 15.6 m/s, respectively, based on the condition for the wave age 
𝑐𝑐𝑝𝑝 𝑈𝑈⁄ = 1, where U is the wind speed, с𝑝𝑝 = 𝑔𝑔 2⁄ π𝑓𝑓𝑝𝑝 is the phase velocity of 
the spectral peak waves. For these three situations, two cases are analyzed, the waves 
are co-aligned with the magnetic field (top row in Fig. 7) and perpendicular to 
the magnetic field (bottom row). 

Comparing the simulation results with the field measurements (Fig. 7 and 
Fig. 4), one can note their close similarity. Despite the rather primitive simulation 
scheme (no resonant hull oscillations, perfect wave following, representation of 
the surface by a set of Gerstner waves), the numerical simulations exhibit the same 
characteristics as for the real sea. Particularly, an almost complete agreement of 
the estimates with the true value in the operating frequency range 𝑓𝑓𝑝𝑝 < 𝑓𝑓 < 1 Hz; 
a “fall-off” of the spectral density in the higher frequency range in accordance with 
the transfer function of the hull; the presence of low frequency noise. Regarding 
the latter, the level of low frequency noise may differ by a factor of 3–4, depending 
on the choice of data processing algorithm. 

The strongest low frequency noise is introduced by the Kalman filter (A4). 
For example, at the wind speeds above 15 m/s, the spectral peak becomes barely 
distinguishable (Fig. 7, f) or indistinguishable (Fig. 7, c) depending on the direction 
of the waves relative to the magnetic field. The dependence on the wave azimuth is 
much greater for algorithms based on the TRIAD method (A2/A3). The worst 
performance is obtained with the A3 algorithm (magnetic field priority) when 
the orientation of the waves and the magnetic field are perpendicular to each other. 
The A2 algorithm (gravity priority) produces a level of low frequency noise 
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comparable to the A1 algorithm, which assumes that the buoy perfectly follows 
the wave slopes (the default option in these simulations). 

Thus, the conducted numerical simulation clearly demonstrates that the level of 
the intrinsic noise of modern inertial sensors (e.g., the noise of the MPU-9250 sensor 
is shown by the blue lines in Fig. 7) is negligibly small, compared to both the wave 
signal and the low frequency noise. The latter, based on the problem formulation, 
can only be generated by the nonlinearity in the response of the measuring device to 
wave surface. Particularly, the average slope and elevation of the buoy in this 
simulation is based on always changing ensembles of liquid particles.  

F i g.  7. Elevation spectra estimated from virtual buoy measurements (colored lines) compared to 
the true spectrum (thick black line). The direction of the waves in the numerical experiment is along 
the magnetic field – on the top, across the magnetic field – on the bottom. The peak wave frequency is 
0.3 Hz (on the left), 0.2 Hz (in the middle), 0.1 Hz (on the right) with a constant wave age equal to 1 

Similar non-linear effects are manifested as low frequency noise in various 
dynamic systems, such as infra-gravity waves [48], acoustic noise of the sea [49], 
etc. In the considered sea surface-buoy system, the nonlinearity is inherent both in 
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the surface itself and in the estimation of the surface slope. In the case of the Kalman 
filter, the recursive transform is ambiguous, i.e., the estimate in the current step 
depends on the result of the calculation in the previous step. 

It should also be noted that in the real conditions there are usually many more 
sources of noise. These include the hull resonance oscillations, which are generally 
non-linear because the dependence of the buoyancy force and the restoring moment 
on the current draft and tilt of the buoy is determined by the shape of the hull and 
the mass distribution within it. The holding line response (if present) can also be 
important [11], as can biofouling [50] and the interaction of the buoy hull with wind 
[51] and currents [52]. Obviously, all these factors may impact the measurement 
errors. At the same time, the technical characteristics of modern inertial sensors play 
a minor role, as can be seen from the present results. 

Conclusion 
This paper presents the results of laboratory, field, and numerical experiments 

to assess the applicability of the modern conventional MEMS inertial motion units 
(IMUs) in wave buoys. The main conclusions are as follows: 

– various methods of estimating wave heights based on measurements from
standard IMUs (accelerometer/gyroscope/magnetometer) are considered. The most 
suitable method is based on the analysis of the vertical accelerations of the sensor in 
a fixed reference frame. Four algorithms are considered for estimating vertical 
accelerations, based on (a) the assumption of perfect wave following, (b) the so-
called TRIAD method, which is an exact solution only for uniform motion, and (c) 
the recursive Kalman filter, which is the most popular solution in navigation 
problems; 

– laboratory tests have shown that the static accelerometer noise of a typical
IMU is 3-4 orders of magnitude lower than the surface wave signal, and the accuracy 
characteristics of such sensors ensure that wave heights are measured with an error 
not exceeding the specification values, which is typically no more than 3%. The error 
in estimated wave height from the field wave buoy measurements is within 2% in 
the spectral peak band ranging from 0.2 to 0.25 Hz; 

– the noise at frequencies below the spectral peak can be a serious problem for
wave height estimation as it prevents the wave signal from being confidently 
distinguished. For example, the error in estimating the significant wave height 
increases to 10% when the spectrum is integrated from the signal/noise separating 
frequency estimated from the first local minimum condition. The error can become 
unacceptable when a low frequency spectral peak is mistakenly detected due to 
the “gain factor” 𝑓𝑓−4 that relates the acceleration and elevation spectra; 

– in order to determine the origin of the low frequency noise, a numerical
experiment was performed to simulate the signals of an idealized IMU-based buoy 
and to retrieve the wave parameters from them. A sufficient condition for 
the occurrence of such noise is the nonlinearity of the sea surface, which is present 
in the simulated superposition of Gerstner waves. Even without taking into account 
the resonant oscillations of the hull (a zero-thickness buoy), the results of 
the numerical experiment reproduce almost all the details of the field measurements, 
including the low frequency noise; 
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– the highest level of low frequency noise, both in the field and in the numerical 
experiments, is observed when the Kalman filter is used to determine the buoy 
current orientation. Thus, the minimization of the wave height measurement error is 
more sensitive to the choice of the data processing algorithm than to the choice of 
a specific sensor model. 
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